[1] White W C. Butadiene Production Process Overview[J]. Chemico-Biological Interactions, 2007, 166(1): 10-14.
[2] Matos C T, Gouveia L, Morais A R C, et al. Green Metrics Evaluation of Isoprene Production by Microalgae and Bacteria[J]. Green Chemistry, 2013, 15(10): 2854-2864.
[3] Makshina E V, Dusselier M, Janssens W, et al. Review of Old Chemistry and New Catalytic Advances in the on-Purpose Synthesis of Butadiene[J]. Chemical Society Reviews, 2014, 43(22): 7917-7953.
[4] Behr A, Johnen L. Myrcene as a Natural Base Chemical in Sustainable Chemistry: A Critical Review[J]. ChemSusChem, 2009, 2(12): 1072-1095.
[5] Soengas R G, Rodríguez-Solla H. Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes[J]. Molecules, 2021, 26(2): 249.
[6] Saha B, Ehara M, Nakatsuji H. Singly and Doubly Excited States of Butadiene, Acrolein, and Glyoxal: Geometries and Electronic Spectra[J]. The Journal of Chemical Physics, 2006, 125(1)
[7] Kandalam A K, Rao B K, Jena P, Lilly A C. Binding of Butadiene Molecules Mediated by Ni Atom and Ni+ Ion[J]. The Journal of Physical Chemistry A, 2004, 108(24): 5234-5241.
[8] Levandowski B J, Raines R T. Click Chemistry with Cyclopentadiene[J]. Chemical Reviews, 2021, 121(12): 6777-6801.
[9] Dogra A, Gupta N. Aluminum-Based Catalysts for Cycloaddition Reactions: Moving One Step Ahead in Sustainability[J]. ChemistrySelect, 2019, 4(35): 10452-10465.
[10] Briou B, Améduri B, Boutevin B. Trends in the Diels–Alder Reaction in Polymer Chemistry[J]. Chemical Society Reviews, 2021, 50(19): 11055-11097.
[11] Salakhov I I, Kozlov V G, Sosnovskaya L B, et al. Features of the Effect of Organochlorine Compounds on Polymerization of Olefins and Dienes in the Presence of Ziegler–Natta Catalysts[J]. Polymer Science, Series B, 2023, 65(2): 79-102.
[12] Lianrong Fu Y-B W, Hui Jiang, Xin-Qi Hao, Mao-Ping Song. Applications of Cobalt Complexes in Olefin Polymerization[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3530-3548.
[13] Dhanorkar R J, Mohanty S, Gupta V K. Synthesis of Functionalized Styrene Butadiene Rubber and Its Applications in Sbr–Silica Composites for High Performance Tire Applications[J]. Industrial & Engineering Chemistry Research, 2021, 60(12): 4517-4535.
[14] Hatch L F, Gardner P D, Gilbert R E. The Mechanism of Bromine Addition to 1,3-Butadiene1[J]. Journal of the American Chemical Society, 1959, 81(22): 5943-5946.
[15] Olsen S T, Brøndsted Nielsen M, Hansen T, et al. A Study of Electrocyclic Reactions in a Molecular Junction: Mechanistic and Energetic Requirements for Switching in the Coulomb Blockade Regime[J]. ChemPhysChem, 2017, 18(12): 1517-1525.
[16] Xie P, Fu W, Wu Y, et al. Allylic Phosphorus Ylides Directly Generated from Alcohols with Water as the Only Byproduct[J]. Organic Letters, 2019, 21(11): 4168-4172.
[17] Liang X, Yoo M, Schempp T, et al. Ruthenium-Catalyzed Butadiene-Mediated Crotylation and Oxazaborolidine-Catalyzed Vinylogous Mukaiyama Aldol Reaction for the Synthesis of C1–C19 and C23–C35 of Neaumycin B[J]. Angewandte Chemie International Edition, 2022, 61(52): e202214786.
[18] Guzmán E A, Xu Q, Pitts T P, et al. Leiodermatolide, a Novel Marine Natural Product, Has Potent Cytotoxic and Antimitotic Activity against Cancer Cells, Appears to Affect Microtubule Dynamics, and Exhibits Antitumor Activity[J]. International Journal of Cancer, 2016, 139(9): 2116-2126.
[19] Doerksen R S, Meyer C C, Krische M J. Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis[J]. Angewandte Chemie International Edition, 2019, 58(40): 14055-14064.
[20] Holmes M, Schwartz L A, Krische M J. Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl Compounds and Imines[J]. Chemical Reviews, 2018, 118(12): 6026-6052.
[21] Li G, Huo X, Jiang X, Zhang W. Asymmetric Synthesis of Allylic Compounds Via Hydrofunctionalisation and Difunctionalisation of Dienes, Allenes, and Alkynes[J]. Chemical Society Reviews, 2020, 49(7): 2060-2118.
[22] Adamson N J, Malcolmson S J. Catalytic Enantio- and Regioselective Addition of Nucleophiles in the Intermolecular Hydrofunctionalization of 1,3-Dienes[J]. ACS Catalysis, 2020, 10(2): 1060-1076.
[23] Wu X, Gong L-Z. Palladium(0)-Catalyzed Difunctionalization of 1,3-Dienes: From Racemic to Enantioselective[J]. Synthesis, 2019, 51(01): 122-134.
[24] Xiong Y, Sun Y, Zhang G. Recent Advances on Catalytic Asymmetric Difunctionalization of 1,3-Dienes[J]. Tetrahedron Letters, 2018, 59(4): 347-355.
[25] Pellissier H, Clavier H. Enantioselective Cobalt-Catalyzed Transformations[J]. Chemical Reviews, 2014, 114(5): 2775-2823.
[26] Chirik P J. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands[J]. Accounts of Chemical Research, 2015, 48(6): 1687-1695.
[27] Perry G J P, Jia T, Procter D J. Copper-Catalyzed Functionalization of 1,3-Dienes: Hydrofunctionalization, Borofunctionalization, and Difunctionalization[J]. ACS Catalysis, 2020, 10(2): 1485-1499.
[28] Flaget A, Zhang C, Mazet C. Ni-Catalyzed Enantioselective Hydrofunctionalizations of 1,3-Dienes[J]. ACS Catalysis, 2022, 12(24): 15638-15647.
[29] Yang P-F, Zhu L, Liang J-X, et al. Regio- and Enantioselective Hydroalkylations of Unactivated Olefins Enabled by Nickel Catalysis: Reaction Development and Mechanistic Insights[J]. ACS Catalysis, 2022, 12(10): 5795-5805.
[30] Yang P-F, Shu W. Orthogonal Access to Α-/Β-Branched/Linear Aliphatic Amines by Catalyst-Tuned Regiodivergent Hydroalkylations[J]. Angewandte Chemie International Edition, 2022, 61(34): e202208018.
[31] Wang S, Shi L, Chen X-Y, Shu W. Catalyst-Controlled Regiodivergent and Enantioselective Formal Hydroamination of N,N-Disubstituted Acrylamides to Α-Tertiary-Α-Aminolactam and Β-Aminoamide Derivatives[J]. Angewandte Chemie International Edition, 2023, 62(22): e202303795.
[32] Yang Y, Zhu S-F, Duan H-F, et al. Asymmetric Reductive Coupling of Dienes and Aldehydes Catalyzed by Nickel Complexes of Spiro Phosphoramidites: Highly Enantioselective Synthesis of Chiral Bishomoallylic Alcohols[J]. Journal of the American Chemical Society, 2007, 129(8): 2248-2249.
[33] Davies T Q, Murphy J J, Dousset M, Fürstner A. Nickel-Catalyzed Enantioselective Synthesis of Pre-Differentiated Homoallylic Syn- or Anti-1,2-Diols from Aldehydes and Dienol Ethers[J]. Journal of the American Chemical Society, 2021, 143(34): 13489-13494.
[34] Davies T Q, Kim J Y, Fürstner A. Nickel-Catalyzed Enantioselective Coupling of Aldehydes and Electron-Deficient 1,3-Dienes Following an Inverse Regiochemical Course[J]. Journal of the American Chemical Society, 2022, 144(41): 18817-18822.
[35] Cheng L, Li M-M, Xiao L-J, et al. Nickel(0)-Catalyzed Hydroalkylation of 1,3-Dienes with Simple Ketones[J]. Journal of the American Chemical Society, 2018, 140(37): 11627-11630.
[36] Xia J, Hirai T, Katayama S, et al. Mechanistic Study of Ni and Cu Dual Catalyst for Asymmetric C–C Bond Formation; Asymmetric Coupling of 1,3-Dienes with C-Nucleophiles to Construct Vicinal Stereocenters[J]. ACS Catalysis, 2021, 11(11): 6643-6655.
[37] Liao L, Zhang Y, Wu Z-W, et al. Nickel-Catalyzed Regio- and Enantio-Selective Markovnikov Hydromonofluoroalkylation of 1,3-Dienes[J]. Chemical Science, 2022, 13(42): 12519-12526.
[38] Shao W, Besnard C, Guénée L, Mazet C. Ni-Catalyzed Regiodivergent and Stereoselective Hydroalkylation of Acyclic Branched Dienes with Unstabilized C(Sp3) Nucleophiles[J]. Journal of the American Chemical Society, 2020, 142(38): 16486-16492.
[39] Sato Y, Saito N, Mori M. A Novel Asymmetric Cyclization of Ω-Formyl-1,3-Dienes Catalyzed by a Zerovalent Nickel Complex in the Presence of Silanes[J]. Journal of the American Chemical Society, 2000, 122(10): 2371-2372.
[40] Sato Y, Hinata Y, Seki R, et al. Nickel-Catalyzed Enantio- and Diastereoselective Three-Component Coupling of 1,3-Dienes, Aldehydes, and Silanes Using Chiral N-Heterocyclic Carbenes as Ligands[J]. Organic Letters, 2007, 9(26): 5597-5599.
[41] Li C, Shin K, Liu R Y, Buchwald S L. Engaging Aldehydes in CuH-Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3-Diene Pronucleophiles[J]. Angewandte Chemie International Edition, 2019, 58(47): 17074-17080.
[42] Li C, Liu R Y, Jesikiewicz L T, et al. CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications[J]. Journal of the American Chemical Society, 2019, 141(12): 5062-5070.
[43] Fu B, Yuan X, Li Y, et al. Copper-Catalyzed Asymmetric Reductive Allylation of Ketones with 1,3-Dienes[J]. Organic Letters, 2019, 21(10): 3576-3580.
[44] Acharyya R K, Kim S, Park Y, et al. Asymmetric Synthesis of 1,2-Dihydronaphthalene-1-Ols Via Copper-Catalyzed Intramolecular Reductive Cyclization[J]. Organic Letters, 2020, 22(20): 7897-7902.
[45] Li D, Park Y, Yoon W, et al. Asymmetric Synthesis of 1-Benzazepine Derivatives Via Copper-Catalyzed Intramolecular Reductive Cyclization[J]. Organic Letters, 2019, 21(23): 9699-9703.
[46] Deng X-H, Jiang J-X, Jiang Q, et al. Cuh-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Trifluoromethyl Ketoimines or Α-Iminoacetates[J]. Organic Letters, 2022, 24(25): 4586-4591.
[47] Li M, Wang J, Meng F. Cu-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Aldimines[J]. Organic Letters, 2018, 20(22): 7288-7292.
[48] Gui Y-Y, Hu N, Chen X-W, et al. Highly Regio- and Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of Styrenes and 1,3-Dienes with Co2[J]. Journal of the American Chemical Society, 2017, 139(47): 17011-17014.
[49] Chen X-W, Zhu L, Gui Y-Y, et al. Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters Via Functionalization of 1,3-Dienes with Co2[J]. Journal of the American Chemical Society, 2019, 141(47): 18825-18835.
[50] You Y E, Pham Q V, Ge S. Copper-Catalyzed Asymmetric Formal Hydroaminomethylation of Alkenes with N,O-Acetals to Access Chiral Β-Stereogenic Amines: Dual Functions of the Copper Catalyst[J]. CCS Chemistry, 2019, 1(4): 455-463.
[51] Ren K, Yuan R, Gui Y-Y, et al. Cu-Catalyzed Reductive Aminomethylation of 1,3-Dienes with N,O-Acetals: Facile Construction of Β-Chiral Amines with Quaternary Stereocenters[J]. Organic Chemistry Frontiers, 2023, 10(2): 467-472.
[52] Moselage M, Li J, Ackermann L. Cobalt-Catalyzed C–H Activation[J]. ACS Catalysis, 2016, 6(2): 498-525.
[53] Peng S, Yang J, Liu G, Huang Z. Ligand Controlled Cobalt Catalyzed Regiodivergent 1,2-Hydroboration of 1,3-Dienes[J]. Science China Chemistry, 2019, 62(3): 336-340.
[54] Parsutkar M M, Bhunia S, Majumder M, et al. Ligand Control in Co-Catalyzed Regio- and Enantioselective Hydroboration: Homoallyl Secondary Boronates Via Uncommon 4,3-Hydroboration of 1,3-Dienes[J]. Journal of the American Chemical Society, 2023, 145(13): 7462-7481.
[55] Duvvuri K, Dewese K R, Parsutkar M M, et al. Cationic Co(I)-Intermediates for Hydrofunctionalization Reactions: Regio- and Enantioselective Cobalt-Catalyzed 1,2-Hydroboration of 1,3-Dienes[J]. Journal of the American Chemical Society, 2019, 141(18): 7365-7375.
[56] Raya B, Jing S, Balasanthiran V, Rajanbabu T V. Control of Selectivity through Synergy between Catalysts, Silanes, and Reaction Conditions in Cobalt-Catalyzed Hydrosilylation of Dienes and Terminal Alkenes[J]. ACS Catalysis, 2017, 7(4): 2275-2283.
[57] Sang H L, Yu S, Ge S. Cobalt-Catalyzed Regioselective Stereoconvergent Markovnikov 1,2-Hydrosilylation of Conjugated Dienes[J]. Chemical Science, 2018, 9(4): 973-978.
[58] Yang S-N, Liu C-H, He L-B, et al. Ligand-Controlled Regiodivergence in Cobalt-Catalyzed Hydrosilylation of Isoprene[J]. Organic Chemistry Frontiers, 2023, 10(9): 2204-2210.
[59] Wang L, Lu W, Zhang J, et al. Cobalt-Catalyzed Regio-, Diastereo- and Enantioselective Intermolecular Hydrosilylation of 1,3-Dienes with Prochiral Silanes[J]. Angewandte Chemie International Edition, 2022, 61(30): e202205624.
[60] Vogt D. Cobalt-Catalyzed Asymmetric Hydrovinylation[J]. Angewandte Chemie International Edition, 2010, 49(40): 7166-7168.
[61] Arndt M, Dindaroğlu M, Schmalz H-G, Hilt G. Gaining Absolute Control of the Regiochemistry in the Cobalt-Catalyzed 1,4-Hydrovinylation Reaction[J]. Organic Letters, 2011, 13(23): 6236-6239.
[62] Page J P, Rajanbabu T V. Asymmetric Hydrovinylation of 1-Vinylcycloalkenes. Reagent Control of Regio- and Stereoselectivity[J]. Journal of the American Chemical Society, 2012, 134(15): 6556-6559.
[63] Chen Q-A, Kim D K, Dong V M. Regioselective Hydroacylation of 1,3-Dienes by Cobalt Catalysis[J]. Journal of the American Chemical Society, 2014, 136(10): 3772-3775.
[64] Xiang M, Pfaffinger D E, Krische M J. Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and State-of-the-Art Survey[J]. Chemistry – A European Journal, 2021, 27(52): 13107-13116.
[65] Girard C, Kagan H B. Nonlinear Effects in Asymmetric Synthesis and Stereoselective Reactions: Ten Years of Investigation[J]. Angewandte Chemie International Edition, 1998, 37(21): 2922-2959.
[66] Huang W, Bai J, Guo Y, et al. Cobalt-Catalyzed Regiodivergent and Enantioselective Intermolecular Coupling of 1,1-Disubstituted Allenes and Aldehydes[J]. Angewandte Chemie International Edition, 2023, 62(19): e202219257.
[67] Elaas N A, Elaas W A, Huang D, et al. Tin Powder-Mediated One-Pot Protocols for Allylation Reactions by Allylic Halides[J]. Current Organic synthesis, 2017, 14(8): 1156-1171.
[68] Wang C, Yin H, Chen W S, Chen Z R. Recent Developments in the Asymmetric Allylation of Aldehydes[J]. Chinese Journal of Organic Chemistry, 2005, 25(1): 34-41.
[69] Denmark S E, Fu J. Catalytic Enantioselective Addition of Allylic Organometallic Reagents to Aldehydes and Ketones[J]. Chemical Reviews, 2003, 103(8): 2763-2794.
[70] Sakata Y, Yasui E, Takatori K, et al. Syntheses of Polycyclic Tetrahydrofurans by Cascade Reactions Consisting of Five-Membered Ring Selective Prins Cyclization and Friedel–Crafts Cyclization[J]. The Journal of Organic Chemistry, 2018, 83(16): 9103-9118.
[71] Sen S, Singh S, Sieburth S M. A Practical, Two-Step Synthesis of 2-Substituted 1,3-Butadienes[J]. The Journal of Organic Chemistry, 2009, 74(7): 2884-2886.
[72] Wei X-J, Yang D-T, Wang L, et al. A Novel Intermolecular Synthesis of Γ-Lactones Via Visible-Light Photoredox Catalysis[J]. Organic Letters, 2013, 15(23): 6054-6057.
[73] Tani K, Behenna D C, Mcfadden R M, Stoltz B M. A Facile and Modular Synthesis of Phosphinooxazoline Ligands[J]. Organic Letters, 2007, 9(13): 2529-2531.
[74] Gillbard S M, Chung C-H, Karad S N, et al. Synthesis of Multisubstituted Pyrroles by Nickel-Catalyzed Arylative Cyclizations of N-Tosyl Alkynamides[J]. Chemical Communications, 2018, 54(83): 11769-11772.
[75] Mou X-Q, Rong F-M, Zhang H, et al. Copper(I)-Catalyzed Enantioselective Intramolecular Aminotrifluoromethylation of O-Homoallyl Benzimidates[J]. Organic Letters, 2019, 21(12): 4657-4661.
[76] Katritzky A R, Serdyuk L, Toader D, Wang X. A Four-Carbon Unit Reagent for the Regiospecific Synthesis of 2-Alkyl-Substituted 1,3-Butadienes[J]. The Journal of Organic Chemistry, 1999, 64(6): 1888-1892.
[77] Braconi E, Götzinger A C, Cramer N. Enantioselective Iron-Catalyzed Cross-
[4+4]-Cycloaddition of 1,3-Dienes Provides Chiral Cyclooctadienes[J]. Journal of the American Chemical Society, 2020, 142(47): 19819-19824.
[78] Arase A, Hoshi M. A New Synthesis of 2-Alkylbuta-1,3-Dienes from Internal Alkenes and 1,4-Dichlorobut-2-Yne Via Dialkyl(1,4-Dichlorobut-2-En-2-Yl)Boranes[J]. Journal of the Chemical Society, Chemical Communications, 1987(8): 531-532.
修改评论