题名 | Fully Automatic White Matter Hyperintensity Segmentation using U-net and Skip Connection |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2019-07-01
|
会议名称 | Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
|
ISSN | 1557-170X
|
ISBN | 978-1-5386-1312-2
|
会议录名称 | |
页码 | 974-977
|
会议日期 | July 23– 27, 2019
|
会议地点 | Berlin, Germany
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | White matter hyperintensity (WMH) is associated with various aging and neurodegenerative diseases. In this paper, we proposed and validated a fully automatic system which integrated classical image processing and deep neural network for segmenting WMH from fluid attenuation inversion recovery (FLAIR) and T1-weighed magnetic resonance (MR) images. A novel skip connection U-net (SC U-net) was proposed and compared with the classical U-net. Experiments were performed on a dataset of 60 images, acquired from three different scanners. Validation analysis and cross-scanner testing were conducted. Compared with U-net, the proposed SC U-net had a faster convergence and higher segmentation accuracy. The software environment and models of the proposed system were made publicly accessible at Dockerhub. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | [81501546]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Biomedical
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000557295301093
|
EI入藏号 | 20200308034702
|
EI主题词 | Deep neural networks
; Neurodegenerative diseases
; Image segmentation
; Scanning
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Magnetism: Basic Concepts and Phenomena:701.2
|
Scopus记录号 | 2-s2.0-85077900766
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8856913 |
引用统计 |
被引频次[WOS]:8
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/64895 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.Lab. of Biomed. Imaging and Sign. Processing and Department of Electrical and Electronic Engineering,University of Hong Kong,Hong Kong,Hong Kong 3.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,China 4.School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Yue,Wu,Jiong,Chen,Wanli,et al. Fully Automatic White Matter Hyperintensity Segmentation using U-net and Skip Connection[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:974-977.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Fully Automatic Whit(899KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论