中文版 | English
题名

Fully Automatic White Matter Hyperintensity Segmentation using U-net and Skip Connection

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2019-07-01
会议名称
Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
ISSN
1557-170X
ISBN
978-1-5386-1312-2
会议录名称
页码
974-977
会议日期
July 23– 27, 2019
会议地点
Berlin, Germany
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

White matter hyperintensity (WMH) is associated with various aging and neurodegenerative diseases. In this paper, we proposed and validated a fully automatic system which integrated classical image processing and deep neural network for segmenting WMH from fluid attenuation inversion recovery (FLAIR) and T1-weighed magnetic resonance (MR) images. A novel skip connection U-net (SC U-net) was proposed and compared with the classical U-net. Experiments were performed on a dataset of 60 images, acquired from three different scanners. Validation analysis and cross-scanner testing were conducted. Compared with U-net, the proposed SC U-net had a faster convergence and higher segmentation accuracy. The software environment and models of the proposed system were made publicly accessible at Dockerhub.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
[81501546]
WOS研究方向
Engineering
WOS类目
Engineering, Biomedical ; Engineering, Electrical & Electronic
WOS记录号
WOS:000557295301093
EI入藏号
20200308034702
EI主题词
Deep neural networks ; Neurodegenerative diseases ; Image segmentation ; Scanning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Magnetism: Basic Concepts and Phenomena:701.2
Scopus记录号
2-s2.0-85077900766
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8856913
引用统计
被引频次[WOS]:8
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/64895
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.Lab. of Biomed. Imaging and Sign. Processing and Department of Electrical and Electronic Engineering,University of Hong Kong,Hong Kong,Hong Kong
3.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,China
4.School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhang,Yue,Wu,Jiong,Chen,Wanli,et al. Fully Automatic White Matter Hyperintensity Segmentation using U-net and Skip Connection[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:974-977.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Fully Automatic Whit(899KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Chen,Wanli]的文章
百度学术
百度学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Chen,Wanli]的文章
必应学术
必应学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Chen,Wanli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。