中文版 | English
题名

Cooperative coevolution of real predator robots and virtual robots in the pursuit domain

作者
通讯作者Shi,Yuhui
发表日期
2020-04-01
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号89
摘要
The pursuit domain, or predator–prey problem is a standard testbed for the study of coordination techniques. In spite that its problem setup is apparently simple, it is challenging for the research of the emerged swarm intelligence. This paper presents a particle swarm optimization (PSO) based cooperative coevolutionary algorithm for the (predator) robots, called CCPSO-R, where real and virtual robots coexist in an evolutionary algorithm (EA). Virtual robots sample and explore the vicinity of the corresponding real robots and act as their action spaces, while the real robots consist of the real predators who actually pursue the prey robot without fixed behavior rules under the immediate guidance of the fitness function, which is designed in a modular manner with very limited domain knowledge. In addition, kinematic limits and collision avoidance considerations are integrated into the update rules of robots. Experiments are conducted on a scalable swarm of predator robots with 4 types of preys, the results of which show the reliability, generality, and scalability of the proposed CCPSO-R. Comparison with a representative dynamic path planning based algorithm Multi-Agent Real-Time Pursuit (MAPS) further shows the effectiveness of CCPSO-R. Finally, the codes of this paper are public available at: https://github.com/LijunSun90/pursuitCCPSOR.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Basic Research Program of China (973 Program)[2017YFC0804002] ; Guangdong Province Introduction of Innovative R&D Team[2017ZT07X386] ; National Natural Science Foundation of China[61761136008] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; Shenzhen Science and Technology Innovation Commission[ZDSYS201703031748284]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000520042200025
出版者
EI入藏号
20200408076888
EI主题词
Intelligent robots ; Motion planning ; Multi agent systems ; Particle swarm optimization (PSO)
EI分类号
Computer Software, Data Handling and Applications:723 ; Robot Applications:731.6
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85078153560
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/64972
专题工学院_计算机科学与工程系
作者单位
1.Shenzhen Key Laboratory of Computational Intelligence,Department of Computer Science and Engineering,Southern University of Science and Technology,China
2.Centre for Artificial Intelligence,CIBCI Lab,Faculty of Engineering and Information Technology,University of Technology Sydney,Australia
3.Harbin Institute of Technology,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Sun,Lijun,Lyu,Chao,Shi,Yuhui. Cooperative coevolution of real predator robots and virtual robots in the pursuit domain[J]. APPLIED SOFT COMPUTING,2020,89.
APA
Sun,Lijun,Lyu,Chao,&Shi,Yuhui.(2020).Cooperative coevolution of real predator robots and virtual robots in the pursuit domain.APPLIED SOFT COMPUTING,89.
MLA
Sun,Lijun,et al."Cooperative coevolution of real predator robots and virtual robots in the pursuit domain".APPLIED SOFT COMPUTING 89(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun,Lijun]的文章
[Lyu,Chao]的文章
[Shi,Yuhui]的文章
百度学术
百度学术中相似的文章
[Sun,Lijun]的文章
[Lyu,Chao]的文章
[Shi,Yuhui]的文章
必应学术
必应学术中相似的文章
[Sun,Lijun]的文章
[Lyu,Chao]的文章
[Shi,Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。