中文版 | English
题名

Recursive Utility Processes, Dynamic Risk Measures and Quadratic Backward Stochastic Volterra Integral Equations

作者
通讯作者Sun,Jingrui
发表日期
2021
DOI
发表期刊
ISSN
0095-4616
EISSN
1432-0606
卷号84页码:145–190
摘要

For an F-measurable payoff of a European type contingent claim, the recursive utility process/dynamic risk measure can be described by the adapted solution to a backward stochastic differential equation (BSDE). However, for an F-measurable stochastic process (called a position process, not necessarily F-adapted), mimicking BSDE’s approach will lead to a time-inconsistent recursive utility/dynamic risk measure. It is found that a more proper approach is to use the adapted solution to a backward stochastic Volterra integral equation (BSVIE). The corresponding notions are called equilibrium recursive utility and equilibrium dynamic risk measure, respectively. Motivated by this, the current paper is concerned with BSVIEs whose generators are allowed to have quadratic growth (in Z(t, s)). The existence and uniqueness for both the so-called adapted solutions and adapted M-solutions are established. A comparison theorem for adapted solutions to the so-called Type-I BSVIEs is established as well. As consequences of these results, some general continuous-time equilibrium dynamic risk measures and equilibrium recursive utility processes are constructed.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
NSF[DMS-1812921]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000503712000002
出版者
EI入藏号
20195307949883
EI主题词
Integral equations ; Differential equations ; Continuous time systems ; Stochastic systems ; Risk assessment
EI分类号
Control Systems:731.1 ; Accidents and Accident Prevention:914.1 ; Calculus:921.2 ; Probability Theory:922.1 ; Systems Science:961
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85077057889
来源库
Scopus
引用统计
被引频次[WOS]:25
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/65372
专题理学院_数学系
作者单位
1.School of Mathematical Sciences,Fudan University,Shanghai,200433,China
2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mathematics,University of Central Florida,Orlando,32816,United States
通讯作者单位数学系
推荐引用方式
GB/T 7714
Wang,Hanxiao,Sun,Jingrui,Yong,Jiongmin. Recursive Utility Processes, Dynamic Risk Measures and Quadratic Backward Stochastic Volterra Integral Equations[J]. APPLIED MATHEMATICS AND OPTIMIZATION,2021,84:145–190.
APA
Wang,Hanxiao,Sun,Jingrui,&Yong,Jiongmin.(2021).Recursive Utility Processes, Dynamic Risk Measures and Quadratic Backward Stochastic Volterra Integral Equations.APPLIED MATHEMATICS AND OPTIMIZATION,84,145–190.
MLA
Wang,Hanxiao,et al."Recursive Utility Processes, Dynamic Risk Measures and Quadratic Backward Stochastic Volterra Integral Equations".APPLIED MATHEMATICS AND OPTIMIZATION 84(2021):145–190.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Wang-2019-Recursive (622KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Hanxiao]的文章
[Sun,Jingrui]的文章
[Yong,Jiongmin]的文章
百度学术
百度学术中相似的文章
[Wang,Hanxiao]的文章
[Sun,Jingrui]的文章
[Yong,Jiongmin]的文章
必应学术
必应学术中相似的文章
[Wang,Hanxiao]的文章
[Sun,Jingrui]的文章
[Yong,Jiongmin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。