题名 | On energy dissipation theory and numerical stability for time-fractional phase-field equations |
作者 | |
发表日期 | 2019
|
DOI | |
发表期刊 | |
ISSN | 1064-8275
|
EISSN | 1095-7197
|
卷号 | 41期号:6页码:A3757-A3778 |
摘要 | For the time-fractional phase-field models, the corresponding energy dissipation law has not been well studied on both the continuous and the discrete levels. In this work, we address this open issue. More precisely, we prove for the first time that the time-fractional phase-field models indeed admit an energy dissipation law of an integral type. In the discrete level, we propose a class of finite difference schemes that can inherit the theoretical energy stability. Our discussion covers the time-fractional Allen-Cahn equation, the time-fractional Cahn-Hilliard equation, and the time-fractional molecular beam epitaxy models. Several numerical experiments are carried out to verify the theoretical predictions. In particular, it is observed numerically that for both the time-fractional Cahn-Hilliard equation and the time-fractional molecular beam epitaxy model, there exists a coarsening stage for which the energy dissipation rate satisfies a power law scaling with an asymptotic power - \alpha /3, where \alpha is the fractional parameter. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | ESI高被引
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[11571351]
; National Natural Science Foundation of China[11688101]
; National Natural Science Foundation of China[11731006]
; National Natural Science Foundation of China[11771439]
; National Basic Research Program of China (973 Program)[2015CB856003]
; National Natural Science Foundation of China[91530322]
; National Natural Science Foundation of China[91630203]
; National Natural Science Foundation of China[91630312]
; National Basic Research Program of China (973 Program)[TZ2018001]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000549131500005
|
出版者 | |
EI入藏号 | 20195207903278
|
EI主题词 | Coarsening
; Finite difference method
; Maximum principle
; Molecular beam epitaxy
; Molecular beams
; Two phase flow
|
EI分类号 | Energy Losses (industrial and residential):525.4
; Fluid Flow, General:631.1
; Numerical Methods:921.6
; Atomic and Molecular Physics:931.3
; Materials Science:951
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85076698665
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:115
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/65401 |
专题 | 南方科技大学 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.Division of Science and Technology,BNU-HKBU United International College,Zhuhai, Guangdong,China 2.Shenzhen International Center for Mathematics,Southern University of Science and Technology,Shenzhen,518055,China 3.NCMIS \ and LSEC,Institute of Computational Mathematics and Scientific/Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing,100190,China 4.School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing,100190,China |
第一作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Tang,Tao,Yu,Haijun,Zhou,Tao. On energy dissipation theory and numerical stability for time-fractional phase-field equations[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2019,41(6):A3757-A3778.
|
APA |
Tang,Tao,Yu,Haijun,&Zhou,Tao.(2019).On energy dissipation theory and numerical stability for time-fractional phase-field equations.SIAM JOURNAL ON SCIENTIFIC COMPUTING,41(6),A3757-A3778.
|
MLA |
Tang,Tao,et al."On energy dissipation theory and numerical stability for time-fractional phase-field equations".SIAM JOURNAL ON SCIENTIFIC COMPUTING 41.6(2019):A3757-A3778.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论