中文版 | English
题名

On energy dissipation theory and numerical stability for time-fractional phase-field equations

作者
发表日期
2019
DOI
发表期刊
ISSN
1064-8275
EISSN
1095-7197
卷号41期号:6页码:A3757-A3778
摘要
For the time-fractional phase-field models, the corresponding energy dissipation law has not been well studied on both the continuous and the discrete levels. In this work, we address this open issue. More precisely, we prove for the first time that the time-fractional phase-field models indeed admit an energy dissipation law of an integral type. In the discrete level, we propose a class of finite difference schemes that can inherit the theoretical energy stability. Our discussion covers the time-fractional Allen-Cahn equation, the time-fractional Cahn-Hilliard equation, and the time-fractional molecular beam epitaxy models. Several numerical experiments are carried out to verify the theoretical predictions. In particular, it is observed numerically that for both the time-fractional Cahn-Hilliard equation and the time-fractional molecular beam epitaxy model, there exists a coarsening stage for which the energy dissipation rate satisfies a power law scaling with an asymptotic power - \alpha /3, where \alpha is the fractional parameter.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
重要成果
ESI高被引
学校署名
其他
资助项目
National Natural Science Foundation of China[11571351] ; National Natural Science Foundation of China[11688101] ; National Natural Science Foundation of China[11731006] ; National Natural Science Foundation of China[11771439] ; National Basic Research Program of China (973 Program)[2015CB856003] ; National Natural Science Foundation of China[91530322] ; National Natural Science Foundation of China[91630203] ; National Natural Science Foundation of China[91630312] ; National Basic Research Program of China (973 Program)[TZ2018001]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000549131500005
出版者
EI入藏号
20195207903278
EI主题词
Coarsening ; Finite difference method ; Maximum principle ; Molecular beam epitaxy ; Molecular beams ; Two phase flow
EI分类号
Energy Losses (industrial and residential):525.4 ; Fluid Flow, General:631.1 ; Numerical Methods:921.6 ; Atomic and Molecular Physics:931.3 ; Materials Science:951
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85076698665
来源库
Scopus
引用统计
被引频次[WOS]:115
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/65401
专题南方科技大学
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Division of Science and Technology,BNU-HKBU United International College,Zhuhai, Guangdong,China
2.Shenzhen International Center for Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
3.NCMIS \ and LSEC,Institute of Computational Mathematics and Scientific/Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing,100190,China
4.School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing,100190,China
第一作者单位南方科技大学
推荐引用方式
GB/T 7714
Tang,Tao,Yu,Haijun,Zhou,Tao. On energy dissipation theory and numerical stability for time-fractional phase-field equations[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2019,41(6):A3757-A3778.
APA
Tang,Tao,Yu,Haijun,&Zhou,Tao.(2019).On energy dissipation theory and numerical stability for time-fractional phase-field equations.SIAM JOURNAL ON SCIENTIFIC COMPUTING,41(6),A3757-A3778.
MLA
Tang,Tao,et al."On energy dissipation theory and numerical stability for time-fractional phase-field equations".SIAM JOURNAL ON SCIENTIFIC COMPUTING 41.6(2019):A3757-A3778.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tang,Tao]的文章
[Yu,Haijun]的文章
[Zhou,Tao]的文章
百度学术
百度学术中相似的文章
[Tang,Tao]的文章
[Yu,Haijun]的文章
[Zhou,Tao]的文章
必应学术
必应学术中相似的文章
[Tang,Tao]的文章
[Yu,Haijun]的文章
[Zhou,Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。