中文版 | English
题名

Subset selection under noise

作者
发表日期
2017
ISSN
1049-5258
会议录名称
卷号
2017-December
页码
3561-3571
会议地点
Long Beach, CA, United states
出版者
摘要
The problem of selecting the best k-element subset from a universe is involved in many applications. While previous studies assumed a noise-free environment or a noisy monotone submodular objective function, this paper considers a more realistic and general situation where the evaluation of a subset is a noisy monotone function (not necessarily submodular), with both multiplicative and additive noises. To understand the impact of the noise, we firstly show the approximation ratio of the greedy algorithm and POSS, two powerful algorithms for noise-free subset selection, in the noisy environments. We then propose to incorporate a noise-aware strategy into POSS, resulting in the new PONSS algorithm. We prove that PONSS can achieve a better approximation ratio under some assumption such as i.i.d. noise distribution. The empirical results on influence maximization and sparse regression problems show the superior performance of PONSS.
学校署名
非南科大
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
[BK20170013] ; [NA150123] ; National Natural Science Foundation of China[61603367] ; [2016QNRC001]
EI入藏号
20182105216086
EI主题词
Additive noise ; Approximation algorithms
EI分类号
Electric Circuits:703 ; Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85047002202
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/65580
专题南方科技大学
作者单位
1.Anhui Province Key Lab. of Big Data Analysis and Application,USTC,China
2.National Key Lab. for Novel Software Technology,Nanjing University,China
3.Shenzhen Key Lab of Computational Intelligence,SUSTech,China
推荐引用方式
GB/T 7714
Qian,Chao,Shi,Jing Cheng,Yu,Yang,et al. Subset selection under noise[C]:Neural information processing systems foundation,2017:3561-3571.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian,Chao]的文章
[Shi,Jing Cheng]的文章
[Yu,Yang]的文章
百度学术
百度学术中相似的文章
[Qian,Chao]的文章
[Shi,Jing Cheng]的文章
[Yu,Yang]的文章
必应学术
必应学术中相似的文章
[Qian,Chao]的文章
[Shi,Jing Cheng]的文章
[Yu,Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。