题名 | Subset selection under noise |
作者 | |
发表日期 | 2017
|
ISSN | 1049-5258
|
会议录名称 | |
卷号 | 2017-December
|
页码 | 3561-3571
|
会议地点 | Long Beach, CA, United states
|
出版者 | |
摘要 | The problem of selecting the best k-element subset from a universe is involved in many applications. While previous studies assumed a noise-free environment or a noisy monotone submodular objective function, this paper considers a more realistic and general situation where the evaluation of a subset is a noisy monotone function (not necessarily submodular), with both multiplicative and additive noises. To understand the impact of the noise, we firstly show the approximation ratio of the greedy algorithm and POSS, two powerful algorithms for noise-free subset selection, in the noisy environments. We then propose to incorporate a noise-aware strategy into POSS, resulting in the new PONSS algorithm. We prove that PONSS can achieve a better approximation ratio under some assumption such as i.i.d. noise distribution. The empirical results on influence maximization and sparse regression problems show the superior performance of PONSS. |
学校署名 | 非南科大
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | [BK20170013]
; [NA150123]
; National Natural Science Foundation of China[61603367]
; [2016QNRC001]
|
EI入藏号 | 20182105216086
|
EI主题词 | Additive noise
; Approximation algorithms
|
EI分类号 | Electric Circuits:703
; Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
Scopus记录号 | 2-s2.0-85047002202
|
来源库 | Scopus
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/65580 |
专题 | 南方科技大学 |
作者单位 | 1.Anhui Province Key Lab. of Big Data Analysis and Application,USTC,China 2.National Key Lab. for Novel Software Technology,Nanjing University,China 3.Shenzhen Key Lab of Computational Intelligence,SUSTech,China |
推荐引用方式 GB/T 7714 |
Qian,Chao,Shi,Jing Cheng,Yu,Yang,et al. Subset selection under noise[C]:Neural information processing systems foundation,2017:3561-3571.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论