中文版 | English
题名

Whole brain volume and cortical thickness based automatic classification of wilson's disease

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2019-10-01
会议名称
Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
ISSN
1062-922X
ISBN
978-1-7281-4570-9
会议录名称
卷号
2019-October
页码
819-824
会议日期
October, 2019
会议地点
Bari, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Wilson's disease (WD) is a progressive autosomal-recessive genetic disorder of copper metabolism that can induce cognitive, physical and psychiatric symptoms. Despite the wide use of machine learning methods in neuroimaging analysis, WD-related research has been very rare. In this work, we proposed and validated an efficient pipeline for an automated WD classification based on whole brain segmentation volumes and cortical thicknesses obtained from T1-weighted magnetic resonance images (MRIs). Three well-known supervised machine learning algorithms, including support vector machine (SVM), linear discriminant analysis (LDA), and logistic regression (LR), were evaluated and compared in the setting of WD classification. A total of 51 images, including 27 acquired from WD patients and 24 from age-matched healthy controls, were used in the validation analysis. Univariate feature selection was conducted to eliminate non-relevant features and retain features contributing to the classification performance. Two nested leave-one-out cross validations were adopted, with the inner folder used for optimal parameter estimation and the outer folder for classification performance evaluation. Experimental results showed that when employing volume features, SVM significantly outperformed both LDA and LR, yielding an overall accuracy of 96.1%, a sensitivity of 92.6% and a specificity of 100%. LR could also reach such best classification performance when using a combination of volumes and thicknesses as input features. This study provides a new non-invasive tool (MRI-based) for an automated detection of WDs.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
[81501546]
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000521353900131
EI入藏号
20195207906670
EI主题词
Brain ; Discriminant Analysis ; Image Segmentation ; Learning Algorithms ; Learning Systems ; Machine Learning ; Magnetic Resonance ; Magnetic Resonance Imaging ; Neuroimaging ; Supervised Learning
EI分类号
Biomedical Engineering:461.1 ; Magnetism: Basic Concepts And Phenomena:701.2 ; Computer Software, Data HAndling And Applications:723 ; Statistical Methods:922
Scopus记录号
2-s2.0-85076754955
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8914413
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/65731
专题工学院_电子与电气工程系
作者单位
1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen, Guangdong,China
2.First Affiliated Hospital of Xiamen University,Department of Radiology,Xiamen, Fujian,China
3.Department of Radiology,First Affiliated Hospital of Sun Yat-sen University,Guangzhou, Guangdong,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zou,Lin,Song,Yukun,Chu,Jianping,et al. Whole brain volume and cortical thickness based automatic classification of wilson's disease[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:819-824.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Whole brain volume a(1607KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zou,Lin]的文章
[Song,Yukun]的文章
[Chu,Jianping]的文章
百度学术
百度学术中相似的文章
[Zou,Lin]的文章
[Song,Yukun]的文章
[Chu,Jianping]的文章
必应学术
必应学术中相似的文章
[Zou,Lin]的文章
[Song,Yukun]的文章
[Chu,Jianping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。