题名 | Automated classification of amyotrophic lateral sclerosis using multi-level whole-brain volumes from structural magnetic resonance imaging |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2019-10-01
|
会议名称 | Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-7281-4570-9
|
会议录名称 | |
卷号 | 2019-October
|
页码 | 830-834
|
会议日期 | October, 2019
|
会议地点 | Bari, Italy
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | We proposed and validated a fully-automated classification procedure for amyotrophic lateral sclerosis (ALS) using structural magnetic resonance imaging; specifically, T1-weighted images from 28 ALS subjects and 28 healthy control (HC) subjects were used. The raw features were obtained from a validated multi-granularity whole-brain analysis pipeline, providing multi-level whole-brain segmentation volumes. We employed the support vector machine as our classification algorithm with several feature selection techniques analyzed. According to our leave-one-out cross validation experiment results, the whole-brain structural volumes from Level 4, followed by a feature selection utilizing the standardized Wilcoxon two-sample rank sum statistic, yielded the best classification performance; overall accuracy: 83.93%, sensitivity: 85.71%, specificity: 82.14%, and the area under the receiver operating characteristic curve: 0.8380. The feature selection procedure revealed that the volumes of the thalamus, especially that on the left hemisphere, are the most important (of highest ranking) in the ALS-vs-HC discrimination. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[81401389]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000521353900133
|
EI入藏号 | 20195207906643
|
EI主题词 | Magnetic Resonance Imaging
; Neurodegenerative Diseases
; Statistical Methods
; Support Vector Machines
|
EI分类号 | Medicine And Pharmacology:461.6
; Computer Software, Data HAndling And Applications:723
; Imaging Techniques:746
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85076730047
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8914164 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/65732 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen, Guangdong,China 2.Huawei Technologies Co.,Ltd,Chengdu, Sichuan,China 3.Huazhong University of Science and Technology,Department of Radiology,Wuhan, Hubei,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Wei,Yuanyuan,Jiang,Siyuan,Qin,Yuanyuan,et al. Automated classification of amyotrophic lateral sclerosis using multi-level whole-brain volumes from structural magnetic resonance imaging[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:830-834.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Automated classifica(520KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论