中文版 | English
题名

Automated classification of amyotrophic lateral sclerosis using multi-level whole-brain volumes from structural magnetic resonance imaging

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2019-10-01
会议名称
Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
ISSN
1062-922X
ISBN
978-1-7281-4570-9
会议录名称
卷号
2019-October
页码
830-834
会议日期
October, 2019
会议地点
Bari, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

We proposed and validated a fully-automated classification procedure for amyotrophic lateral sclerosis (ALS) using structural magnetic resonance imaging; specifically, T1-weighted images from 28 ALS subjects and 28 healthy control (HC) subjects were used. The raw features were obtained from a validated multi-granularity whole-brain analysis pipeline, providing multi-level whole-brain segmentation volumes. We employed the support vector machine as our classification algorithm with several feature selection techniques analyzed. According to our leave-one-out cross validation experiment results, the whole-brain structural volumes from Level 4, followed by a feature selection utilizing the standardized Wilcoxon two-sample rank sum statistic, yielded the best classification performance; overall accuracy: 83.93%, sensitivity: 85.71%, specificity: 82.14%, and the area under the receiver operating characteristic curve: 0.8380. The feature selection procedure revealed that the volumes of the thalamus, especially that on the left hemisphere, are the most important (of highest ranking) in the ALS-vs-HC discrimination.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[81401389]
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000521353900133
EI入藏号
20195207906643
EI主题词
Magnetic Resonance Imaging ; Neurodegenerative Diseases ; Statistical Methods ; Support Vector Machines
EI分类号
Medicine And Pharmacology:461.6 ; Computer Software, Data HAndling And Applications:723 ; Imaging Techniques:746 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85076730047
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8914164
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/65732
专题工学院_电子与电气工程系
作者单位
1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen, Guangdong,China
2.Huawei Technologies Co.,Ltd,Chengdu, Sichuan,China
3.Huazhong University of Science and Technology,Department of Radiology,Wuhan, Hubei,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Wei,Yuanyuan,Jiang,Siyuan,Qin,Yuanyuan,et al. Automated classification of amyotrophic lateral sclerosis using multi-level whole-brain volumes from structural magnetic resonance imaging[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2019:830-834.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Automated classifica(520KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei,Yuanyuan]的文章
[Jiang,Siyuan]的文章
[Qin,Yuanyuan]的文章
百度学术
百度学术中相似的文章
[Wei,Yuanyuan]的文章
[Jiang,Siyuan]的文章
[Qin,Yuanyuan]的文章
必应学术
必应学术中相似的文章
[Wei,Yuanyuan]的文章
[Jiang,Siyuan]的文章
[Qin,Yuanyuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。