中文版 | English
题名

3D fully convolutional network incorporating Savitzky-Golay filtering for prostate segmentation

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2019-08-24
会议名称
Proceedings of the 3rd International Symposium on Image Computing and Digital Medicine
会议录名称
页码
88-91
会议日期
August, 2019
会议地点
Xi'an, China
出版地
1515 BROADWAY, NEW YORK, NY 10036-9998 USA
出版者
摘要

In this paper, we proposed a 3D fully convolutional network (FCN) incorporating Savitzky-Golay (SG) filtering for prostate segmentation using magnetic resonance images (MRIs). Deep learning methods have achieved promising results in the field of segmentation, especially in semantic segmentation. However, it is not fully applicable to 3D medical images. To better extract the spatial information encoded in the 3D volumetric data, we designed a 3D FCN with long skip connection and the Parametric Rectified Linear Unit (PReLU) being the activation function. To further polish the deep learning based segmentation results, we employed SG filtering as a post-processing step. The SG filter was applied for smoothing and denoising, wherein second-order partial derivatives were taken to extract the edge information and achieve hole filling. In comparison with the 3D FCN without SG filtering, the post-processed results were more smooth, accurate and robust. The proposed method performed superiorly for prostate segmentation over several other state-of-the-art methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Theory & Methods ; Engineering, Biomedical
WOS记录号
WOS:000526177900017
EI入藏号
20200208018942
EI主题词
Convolution ; Deep Learning ; Magnetic Resonance ; Magnetic Resonance Imaging ; Medical Imaging ; Semantics ; Signal Filtering And Prediction ; Urology ; Volumetric Analysis
EI分类号
Medicine And Pharmacology:461.6 ; Magnetism: Basic Concepts And Phenomena:701.2 ; Information Theory And Signal Processing:716.1 ; Imaging Techniques:746 ; Chemistry:801
Scopus记录号
2-s2.0-85077522603
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/65735
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhong,Pinyuan,Wu,Jiong,Yuan,Zhe,et al. 3D fully convolutional network incorporating Savitzky-Golay filtering for prostate segmentation[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery,2019:88-91.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
3D fully convolution(768KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhong,Pinyuan]的文章
[Wu,Jiong]的文章
[Yuan,Zhe]的文章
百度学术
百度学术中相似的文章
[Zhong,Pinyuan]的文章
[Wu,Jiong]的文章
[Yuan,Zhe]的文章
必应学术
必应学术中相似的文章
[Zhong,Pinyuan]的文章
[Wu,Jiong]的文章
[Yuan,Zhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。