题名 | 3D fully convolutional network incorporating Savitzky-Golay filtering for prostate segmentation |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2019-08-24
|
会议名称 | Proceedings of the 3rd International Symposium on Image Computing and Digital Medicine
|
会议录名称 | |
页码 | 88-91
|
会议日期 | August, 2019
|
会议地点 | Xi'an, China
|
出版地 | 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
|
出版者 | |
摘要 | In this paper, we proposed a 3D fully convolutional network (FCN) incorporating Savitzky-Golay (SG) filtering for prostate segmentation using magnetic resonance images (MRIs). Deep learning methods have achieved promising results in the field of segmentation, especially in semantic segmentation. However, it is not fully applicable to 3D medical images. To better extract the spatial information encoded in the 3D volumetric data, we designed a 3D FCN with long skip connection and the Parametric Rectified Linear Unit (PReLU) being the activation function. To further polish the deep learning based segmentation results, we employed SG filtering as a post-processing step. The SG filter was applied for smoothing and denoising, wherein second-order partial derivatives were taken to extract the edge information and achieve hole filling. In comparison with the 3D FCN without SG filtering, the post-processed results were more smooth, accurate and robust. The proposed method performed superiorly for prostate segmentation over several other state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Theory & Methods
; Engineering, Biomedical
|
WOS记录号 | WOS:000526177900017
|
EI入藏号 | 20200208018942
|
EI主题词 | Convolution
; Deep Learning
; Magnetic Resonance
; Magnetic Resonance Imaging
; Medical Imaging
; Semantics
; Signal Filtering And Prediction
; Urology
; Volumetric Analysis
|
EI分类号 | Medicine And Pharmacology:461.6
; Magnetism: Basic Concepts And Phenomena:701.2
; Information Theory And Signal Processing:716.1
; Imaging Techniques:746
; Chemistry:801
|
Scopus记录号 | 2-s2.0-85077522603
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/65735 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhong,Pinyuan,Wu,Jiong,Yuan,Zhe,et al. 3D fully convolutional network incorporating Savitzky-Golay filtering for prostate segmentation[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:Association for Computing Machinery,2019:88-91.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
3D fully convolution(768KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论