题名 | Magnetotelluric inversion using supervised learning trained with random smooth geoelectric models |
作者 | |
通讯作者 | Liu,Lian |
DOI | |
发表日期 | 2023-12-14
|
ISSN | 1052-3812
|
EISSN | 1949-4645
|
会议录名称 | |
卷号 | 2023-August
|
页码 | 489-492
|
摘要 | Supervised learning has emerged as an effective approach to solving geophysical inversions. The quality of such inversion depends mainly on the training datasets (labeled samples), usually created by synthetic models and forward simulations. We propose a straightforward approach to generating abundant representative labeled samples for 2D or 3D inversion of magnetotelluric (MT) data (or other similar exploration methods). The approach requires very little prior information and has been demonstrated to be effective for the quick recovery of random and blocky models. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20235215283737
|
EI主题词 | Supervised learning
|
EI分类号 | Geophysics:481.3
|
Scopus记录号 | 2-s2.0-85180531299
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/669598 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Department of Earth and Space Sciences,Southern University of Science and Technology,China 2.School of Earth Sciences,Zhejiang University,China |
第一作者单位 | 地球与空间科学系 |
通讯作者单位 | 地球与空间科学系 |
第一作者的第一单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Liu,Lian,Yang,Bo,Xu,Yixian,et al. Magnetotelluric inversion using supervised learning trained with random smooth geoelectric models[C],2023:489-492.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论