中文版 | English
题名

A generalized feature projection scheme for multi-step traffic forecasting

作者
通讯作者Yu,James Jianqiao
发表日期
2024-06-15
DOI
发表期刊
ISSN
0957-4174
卷号244
摘要
Exploiting spatial–temporal correlations has long been regarded as the cornerstone of traffic state prediction. Among existing techniques, temporal graph neural networks (TGNNs) have recently emerged as a prominent solution for modeling complex spatial–temporal traffic data correlations. Existing studies on TGNNs mainly focus on developing new building blocks to embed hidden correlations into a unified latent representation, which is mapped to predictions of distinct horizons. However, mapping the same latent features to distinct scalar predictions makes the gradient computation challenging for updating model parameters in the relevant directions. Besides, TGNNs are biased towards the shared temporal patterns while neglecting the complex dependencies within each data series, which can be captured to enrich latent features. To handle these problems jointly, we propose a novel feature projection scheme for the traffic prediction framework of TGNNs. The proposed projection scheme is based on spatial convolutions that first generate horizon-specific feature maps and then transform them into scalar predictions of the corresponding horizons. These horizon-specific feature maps establish interactions between the unified latent representation and the corresponding output values to bring the predictions closer to the true values. Besides, the proposed scheme also serves as a pattern modeling phase that enhances the expressivity of TGNNs by enriching latent features with data source-wise patterns of distinct time steps. Comprehensive experiments on two real-world traffic datasets demonstrate that the proposed scheme enhances the predictive performance and reduces the model parameters of TGNNs.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85180538725
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/669606
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Research Institute for Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Computer Science,University of York,York,YO10 5DD,United Kingdom
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zeb,Adnan,Zhang,Shiyao,Wei,Xuetao,et al. A generalized feature projection scheme for multi-step traffic forecasting[J]. Expert Systems with Applications,2024,244.
APA
Zeb,Adnan,Zhang,Shiyao,Wei,Xuetao,&Yu,James Jianqiao.(2024).A generalized feature projection scheme for multi-step traffic forecasting.Expert Systems with Applications,244.
MLA
Zeb,Adnan,et al."A generalized feature projection scheme for multi-step traffic forecasting".Expert Systems with Applications 244(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeb,Adnan]的文章
[Zhang,Shiyao]的文章
[Wei,Xuetao]的文章
百度学术
百度学术中相似的文章
[Zeb,Adnan]的文章
[Zhang,Shiyao]的文章
[Wei,Xuetao]的文章
必应学术
必应学术中相似的文章
[Zeb,Adnan]的文章
[Zhang,Shiyao]的文章
[Wei,Xuetao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。