中文版 | English
题名

DCAMIL: Eye-tracking guided dual-cross-attention multi-instance learning for refining fundus disease detection

作者
通讯作者Liu,Jiang
发表日期
2024-06-01
DOI
发表期刊
ISSN
0957-4174
卷号243
摘要
Deep neural networks (DNNs) have facilitated the development of computer-aided diagnosis (CAD) systems for fundus diseases, helping ophthalmologists to reduce missed diagnoses and misdiagnosis rates. However, the majority of CAD systems are data-driven, but lack the prior medical knowledge that can be performance-friendly. In this regard, we innovatively proposed a human-in-the-loop (HITL) CAD system by leveraging ophthalmologists’ eye-tracking information. Concretely, the HITL CAD system was implemented on the multi-instance learning (MIL), where clinicians’ gaze maps were beneficial to cherry-pick diagnosis-related instances. Furthermore, the dual-cross-attention MIL (DCAMIL) network was utilized to curb the adverse effects of noisy instances. Meanwhile, both the sequence augmentation (SA) module and the domain adversarial network (DAN) were introduced to enrich and standardize the instances in the training bag, respectively, thereby enhancing the robustness of our method. We conduct comparative experiments on our newly-constructed datasets (namely, AMD-Gaze and DR-Gaze) for the AMD and early DR detection, respectively. Rigorous experiments demonstrate the feasibility of our HITL CAD system and the superiority of the proposed DCAMIL, which fully exploits ophthalmologists’ eye-tracking information. These investigations indicate that clinicians’ gaze maps, as prior medical knowledge, is potential to contribute to the CAD systems of clinical diseases.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85180403846
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/669608
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Biomedical Engineering,Chinese University of Hong Kong,Hong Kong
3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China
4.School of Ophthalmology and Optometry and Eye Hospital,Wenzhou Medical University,Wenzhou,325027,China
5.Singapore Eye Research Institute,Singapore National Eye Centre,Singapore,169856,Singapore
6.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Jiang,Hongyang,Gao,Mengdi,Huang,Jingqi,et al. DCAMIL: Eye-tracking guided dual-cross-attention multi-instance learning for refining fundus disease detection[J]. Expert Systems with Applications,2024,243.
APA
Jiang,Hongyang,Gao,Mengdi,Huang,Jingqi,Tang,Chen,Zhang,Xiaoqing,&Liu,Jiang.(2024).DCAMIL: Eye-tracking guided dual-cross-attention multi-instance learning for refining fundus disease detection.Expert Systems with Applications,243.
MLA
Jiang,Hongyang,et al."DCAMIL: Eye-tracking guided dual-cross-attention multi-instance learning for refining fundus disease detection".Expert Systems with Applications 243(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Hongyang]的文章
[Gao,Mengdi]的文章
[Huang,Jingqi]的文章
百度学术
百度学术中相似的文章
[Jiang,Hongyang]的文章
[Gao,Mengdi]的文章
[Huang,Jingqi]的文章
必应学术
必应学术中相似的文章
[Jiang,Hongyang]的文章
[Gao,Mengdi]的文章
[Huang,Jingqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。