中文版 | English
题名

A ranking-based multi-scale feature calibration network for nuclear cataract grading in AS-OCT images

作者
通讯作者Zhao,Yitian
发表日期
2024-04-01
DOI
发表期刊
ISSN
1746-8094
EISSN
1746-8108
卷号90
摘要
Anterior Segment Optical Coherence Tomography (AS-OCT) is an important imaging technique for the grading of nuclear cataract. However, due to the complex interdependencies among 6 clinically-defined levels of cataract severity, it presents significant challenges to classify neighboring severity levels accurately and expeditiously, whether by human experts or computer-aided approaches. Existing deep learning-based models usually obtain 3 grades of nuclear cataract severity only, and often struggle to capture vital information related to the progression of neighboring severity levels, leading to inaccuracies in grading. In this paper, we introduce a novel method called Ranking-MFCNet, which utilizes both a ranking-based framework and a Multi-scale Feature Calibration network (MFCNet). To bolster the model's capability for discriminating between neighboring severities that are prone to confusion, we treat the multi-category severity classification as a collection of distinct binary classification patterns. This strategy facilitates a systematic implementation of fine-grained nuclear cataract severity grading on an individual basis. Within each binary classification pattern, we propose an external attention-augmented Multi-scale Feature Calibration (eaMFC) module, which effectively captures the multi-scale characteristics inherent to the lens nucleus. Additionally, eaMFC allows for the calibration of shared attributes extracted by the external attention layer, thereby enhancing the model's proficiency in modeling the distinctive traits related to opacity and sclerosis of the lens nucleus. We trained and validated our model on a dataset that contains 1608 AS-OCT images, and the extensive experiments have verified the effectiveness and superiority of our method over state-of-the-art cataract grading methods.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85180797252
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/669613
专题工学院_计算机科学与工程系
作者单位
1.Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,315201,China
2.Ningbo Cixi Institute of Biomedical Engineering,Cixi,315300,China
3.Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology,Cixi,315300,China
4.Tenth People's Hospital of Tongji University,Shanghai,200072,China
5.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Gu,Yuanyuan,Fang,Lixin,Mou,Lei,et al. A ranking-based multi-scale feature calibration network for nuclear cataract grading in AS-OCT images[J]. Biomedical Signal Processing and Control,2024,90.
APA
Gu,Yuanyuan.,Fang,Lixin.,Mou,Lei.,Ma,Shaodong.,Yan,Qifeng.,...&Zhao,Yitian.(2024).A ranking-based multi-scale feature calibration network for nuclear cataract grading in AS-OCT images.Biomedical Signal Processing and Control,90.
MLA
Gu,Yuanyuan,et al."A ranking-based multi-scale feature calibration network for nuclear cataract grading in AS-OCT images".Biomedical Signal Processing and Control 90(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gu,Yuanyuan]的文章
[Fang,Lixin]的文章
[Mou,Lei]的文章
百度学术
百度学术中相似的文章
[Gu,Yuanyuan]的文章
[Fang,Lixin]的文章
[Mou,Lei]的文章
必应学术
必应学术中相似的文章
[Gu,Yuanyuan]的文章
[Fang,Lixin]的文章
[Mou,Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。