中文版 | English
题名

A framework based on generational and environmental response strategies for dynamic multi-objective optimization

作者
通讯作者Wu,Xiaoming
发表日期
2024-02-01
DOI
发表期刊
ISSN
1568-4946
卷号152
摘要
Due to the dynamics and uncertainty of the dynamic multi-objective optimization problems (DMOPs), it is difficult for algorithms to find a satisfactory solution set before the next environmental change, especially for some complex environments. One reason may be that the information in the environmental static stage cannot be used well in the traditional framework. In this paper, a novel framework based on generational and environmental response strategies (FGERS) is proposed, in which response strategies are run both in the environmental change stage and the environmental static stage to obtain population evolution information of those both stages. Unlike in the traditional framework, response strategies are only run in the environmental change stage. For simplicity, the feed-forward center point strategy was chosen to be the response strategy in the novel dynamic framework (FGERS-CPS). FGERS-CPS is not only to predict change trend of the optimum solution set in the environmental change stage, but to predict the evolution trend of the population after several generations in the environmental static stage. Together with the feed-forward center point strategy, a simple memory strategy and adaptive diversity maintenance strategy were used to form the complete FGERS-CPS. On 13 DMOPs with various characteristics, FGERS-CPS was compared with four classical response strategies in the traditional framework. Experimental results show that FGERS-CPS is effective for DMOPs.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85181141423
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/669636
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Qilu University of Technology (Shandong Academy of Sciences),Shandong Computer Science Center (National Supercomputer Center in Jinan),Shandong Provincial Key Laboratory of Computer Networks,Shandong,China
3.Heze Branch,Qilu University of Technology (Shandong Academy of Sciences),Biological Engineering Technology Innovation Center of Shandong Province,Shandong,China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li,Qingya,Liu,Xiangzhi,Wang,Fuqiang,et al. A framework based on generational and environmental response strategies for dynamic multi-objective optimization[J]. Applied Soft Computing,2024,152.
APA
Li,Qingya,Liu,Xiangzhi,Wang,Fuqiang,Wang,Shuai,Zhang,Peng,&Wu,Xiaoming.(2024).A framework based on generational and environmental response strategies for dynamic multi-objective optimization.Applied Soft Computing,152.
MLA
Li,Qingya,et al."A framework based on generational and environmental response strategies for dynamic multi-objective optimization".Applied Soft Computing 152(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Qingya]的文章
[Liu,Xiangzhi]的文章
[Wang,Fuqiang]的文章
百度学术
百度学术中相似的文章
[Li,Qingya]的文章
[Liu,Xiangzhi]的文章
[Wang,Fuqiang]的文章
必应学术
必应学术中相似的文章
[Li,Qingya]的文章
[Liu,Xiangzhi]的文章
[Wang,Fuqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。