中文版 | English
题名

Scaffold-based non-viral CRISPR delivery platform for efficient and prolonged gene activation to accelerate tissue regeneration

作者
通讯作者Fang,Ju; Ren,Fuzeng
共同第一作者Zhong,Chuanxin; He,Shan
发表日期
2024-01-02
DOI
发表期刊
ISSN
1742-7061
EISSN
1878-7568
卷号173页码:283-297
摘要

Clustered regularly interspaced short palindromic repeat activation (CRISPRa) technology has emerged as a precise genome editing tool for activating endogenous transgene expression. While it holds promise for precise cell modification, its translation into tissue engineering has been hampered by biosafety concerns and suboptimal delivery methods. To address these challenges, we have developed a CRISPRa non-viral gene delivery platform by immobilizing non-viral CRISPRa complexes into a biocompatible hydrogel/nanofiber (Gel/NF) composite scaffold. The Gel/NF scaffold facilitates the controlled and sustained release of CRISPRa complexes and also promotes cell recruitment to the scaffold for efficient and localized transfection. As a proof of concept, we employed this CRISPRa delivery platform to activate the vascular endothelial growth factor (VEGF) gene in a rat model with full-thickness skin defects. Our results demonstrate sustained upregulation of VEGF expression even at 21 days post-implantation, resulting in enhanced angiogenesis and improved skin regeneration. These findings underscore the potential of the Gel/NF scaffold-based CRISPRa delivery platform as an efficient and durable strategy for gene activation, offering promising prospects for tissue regeneration. Statement of significance: Translation of clustered regularly interspaced short palindromic repeat activation (CRISPRa) therapy to tissue engineering is limited by biosafety concerns and unsatisfactory delivery strategy. To solve this issue, we have developed a CRISPRa non-viral gene delivery platform by immobilizing non-viral CRISPRa complexes into a biocompatible hydrogel/nanofiber (Gel/NF) composite scaffold. This scaffold enables controlled and sustained release of CRISPRa and can induce cell recruitment for localized transfection. As a proof of concept, we activated vascular endothelial growth factor (VEGF) in a rat model with full-thickness skin defects, leading to sustained upregulation of VEGF expression, enhanced angiogenesis and improved skin regeneration in vivo. These findings demonstrate the potential of this platform for gene activation, thereby offering promising prospects for tissue regeneration.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 共同第一 ; 通讯
Scopus记录号
2-s2.0-85176431210
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/669683
专题工学院_材料科学与工程系
生命科学学院
生命科学学院_生物系
作者单位
1.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
2.Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases,School of Chinese Medicine,Hong Kong Baptist University,Hong Kong,Hong Kong
3.Department of Biology,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Zhong,Chuanxin,He,Shan,Huang,Yuhong,et al. Scaffold-based non-viral CRISPR delivery platform for efficient and prolonged gene activation to accelerate tissue regeneration[J]. Acta Biomaterialia,2024,173:283-297.
APA
Zhong,Chuanxin.,He,Shan.,Huang,Yuhong.,Yan,Jianfeng.,Wang,Junqin.,...&Ren,Fuzeng.(2024).Scaffold-based non-viral CRISPR delivery platform for efficient and prolonged gene activation to accelerate tissue regeneration.Acta Biomaterialia,173,283-297.
MLA
Zhong,Chuanxin,et al."Scaffold-based non-viral CRISPR delivery platform for efficient and prolonged gene activation to accelerate tissue regeneration".Acta Biomaterialia 173(2024):283-297.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhong,Chuanxin]的文章
[He,Shan]的文章
[Huang,Yuhong]的文章
百度学术
百度学术中相似的文章
[Zhong,Chuanxin]的文章
[He,Shan]的文章
[Huang,Yuhong]的文章
必应学术
必应学术中相似的文章
[Zhong,Chuanxin]的文章
[He,Shan]的文章
[Huang,Yuhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。