中文版 | English
题名

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems

作者
通讯作者Yao,Xin
发表日期
2023-12-12
DOI
发表期刊
ISSN
2688-299X
EISSN
2688-3007
卷号3期号:4
摘要
Population clustering methods, which consider the position and fitness of individuals to form sub-populations in multi-population algorithms, have shown high efficiency in tracking the moving global optimum in dynamic optimization problems. However, most of these methods use a fixed population size, making them inflexible and inefficient when the number of promising regions is unknown. The lack of a functional relationship between the population size and the number of promising regions significantly degrades performance and limits an algorithm’s agility to respond to dynamic changes. To address this issue, we propose a new species-based particle swarm optimization with adaptive population size and number of sub-populations for solving dynamic optimization problems. The proposed algorithm also benefits from a novel systematic adaptive deactivation component that, unlike the previous deactivation components, adapts the computational resource allocation to the sub-populations by considering various characteristics of both the problem and the sub-populations. We evaluate the performance of our proposed algorithm for the Generalized Moving Peaks Benchmark and compare the results with several peer approaches. The results indicate the superiority of the proposed method.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
EI入藏号
20240115309808
EI主题词
Benchmarking ; Cluster analysis ; Particle swarm optimization (PSO) ; Population statistics
EI分类号
Computer Software, Data Handling and Applications:723 ; Management:912.2 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85181002907
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/669709
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Department of Computer Engineering,Mashhad Branch,Azad University,Mashhad,9187147578,Iran
2.Faculty of Engineering & Information Technology,University of Technology Sydney,Ultimo,2007,Australia
3.AI Lab,British Antarctic Survey,Cambridge,CB3 0ET,United Kingdom
4.School of Computing,Leeds University Business School,University of Leeds,Leeds,LS2 9JT,United Kingdom
5.University Research and Innovation Center (EKIK),Obuda University,Budapest,1034,Hungary
6.Research Institute of Trustworthy Autonomous Systems (RITAS),Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
7.The Center of Excellence for Research in Computational Intelligence and Applications (CERCIA),School of Computer Science,University of Birmingham,Birmingham,B15 2TT,United Kingdom
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Yazdani,Delaram,Yazdani,Danial,Yazdani,Donya,et al. A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems[J]. ACM Transactions on Evolutionary Learning and Optimization,2023,3(4).
APA
Yazdani,Delaram,Yazdani,Danial,Yazdani,Donya,Omidvar,Mohammad Nabi,Gandomi,Amir H.,&Yao,Xin.(2023).A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems.ACM Transactions on Evolutionary Learning and Optimization,3(4).
MLA
Yazdani,Delaram,et al."A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems".ACM Transactions on Evolutionary Learning and Optimization 3.4(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yazdani,Delaram]的文章
[Yazdani,Danial]的文章
[Yazdani,Donya]的文章
百度学术
百度学术中相似的文章
[Yazdani,Delaram]的文章
[Yazdani,Danial]的文章
[Yazdani,Donya]的文章
必应学术
必应学术中相似的文章
[Yazdani,Delaram]的文章
[Yazdani,Danial]的文章
[Yazdani,Donya]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。