中文版 | English
题名

A priori screening of data-enabled turbulence models

作者
发表日期
2023-12-01
DOI
发表期刊
EISSN
2469-990X
卷号8期号:12
摘要
Assessing the compliance of a white-box turbulence model with known turbulent knowledge is straightforward. It enables users to screen conventional turbulence models and identify apparent inadequacies, thereby allowing for a more focused and fruitful validation and verification. However, comparing a black-box machine-learning model to known empirical scalings is not straightforward. Unless one implements and tests the model, it would not be clear if a machine-learning model, trained at finite Reynolds numbers preserves the known high Reynolds number limit. This is inconvenient, particularly because model implementation involves retraining and reinterfacing. This work attempts to address this issue, allowing fast a priori screening of machine-learning models that are based on feed-forward neural networks (FNN). The method leverages the mathematical theorems we present in the paper. These theorems offer estimates of a network's limits even when the exact weights and biases are unknown. For demonstration purposes, we screen existing machine-learning wall models and RANS models for their compliance with the log layer physics and the viscous layer physics in an a priori manner. In addition, the theorems serve as essential guidelines for future machine-learning models.
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
第一
EI入藏号
20240115306464
EI主题词
Feedforward neural networks ; Machine learning ; Reynolds number
EI分类号
Fluid Flow, General:631.1 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85180971320
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/669720
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Mechanical Engineering,Pennsylvania State University,16802,United States
3.College of Engineering,Peking University,Beijing,100871,China
4.State Key Laboratory of Turbulence and Complex Systems,Beijing,100871,China
5.Department of Mechanical and Production Engineering,Aarhus University,Aarhus N,8200,Denmark
6.Department of Mechanical Engineering and Applied Mechanics,University of Pennsylvania,Philadelphia,19104,United States
第一作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Chen,Peng E.S.,Bin,Yuanwei,Yang,Xiang I.A.,et al. A priori screening of data-enabled turbulence models[J]. Physical Review Fluids,2023,8(12).
APA
Chen,Peng E.S.,Bin,Yuanwei,Yang,Xiang I.A.,Shi,Yipeng,Abkar,Mahdi,&Park,George I..(2023).A priori screening of data-enabled turbulence models.Physical Review Fluids,8(12).
MLA
Chen,Peng E.S.,et al."A priori screening of data-enabled turbulence models".Physical Review Fluids 8.12(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Peng E.S.]的文章
[Bin,Yuanwei]的文章
[Yang,Xiang I.A.]的文章
百度学术
百度学术中相似的文章
[Chen,Peng E.S.]的文章
[Bin,Yuanwei]的文章
[Yang,Xiang I.A.]的文章
必应学术
必应学术中相似的文章
[Chen,Peng E.S.]的文章
[Bin,Yuanwei]的文章
[Yang,Xiang I.A.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。