题名 | Frequency Domain Separation of DAS Multi-Source Aliased Signals |
作者 | |
DOI | |
发表日期 | 2023
|
ISBN | 979-8-3503-1262-1
|
会议录名称 | |
页码 | 1-4
|
会议日期 | 4-7 Nov. 2023
|
会议地点 | Wuhan, China
|
摘要 | In this paper, fast independent vector analysis (FastIVA) based on convolutional aliasing model is proposed to separate the aliased signals collected by distributed acoustic sensing (DAS) system, and the time-frequency entropy is used to judge the separation performance. The results show that the time-frequency entropy interval of the separated signals and the source signals correspond to each other, which means that the aliased signals are separated. This method is used to improve the accuracy of DAS system signal detection and recognition in complex real environment, and reduce the number of false alarm events. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20240515453655
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10369858 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673704 |
专题 | 创新创业学院 工学院_电子与电气工程系 |
作者单位 | 1.College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China 2.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China 3.School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, China 4.Advanced Measurement and Control and Equipment R&D Center, Research Institute of Tsinghua University, Chengdu, China |
第一作者单位 | 创新创业学院 |
第一作者的第一单位 | 创新创业学院 |
推荐引用方式 GB/T 7714 |
Huaxin Gu,Shuaiqi Liu,Feihong Yu,et al. Frequency Domain Separation of DAS Multi-Source Aliased Signals[C],2023:1-4.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论