中文版 | English
题名

Frequency Domain Separation of DAS Multi-Source Aliased Signals

作者
DOI
发表日期
2023
ISBN
979-8-3503-1262-1
会议录名称
页码
1-4
会议日期
4-7 Nov. 2023
会议地点
Wuhan, China
摘要
In this paper, fast independent vector analysis (FastIVA) based on convolutional aliasing model is proposed to separate the aliased signals collected by distributed acoustic sensing (DAS) system, and the time-frequency entropy is used to judge the separation performance. The results show that the time-frequency entropy interval of the separated signals and the source signals correspond to each other, which means that the aliased signals are separated. This method is used to improve the accuracy of DAS system signal detection and recognition in complex real environment, and reduce the number of false alarm events.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20240515453655
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10369858
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673704
专题创新创业学院
工学院_电子与电气工程系
作者单位
1.College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
2.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
3.School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, China
4.Advanced Measurement and Control and Equipment R&D Center, Research Institute of Tsinghua University, Chengdu, China
第一作者单位创新创业学院
第一作者的第一单位创新创业学院
推荐引用方式
GB/T 7714
Huaxin Gu,Shuaiqi Liu,Feihong Yu,et al. Frequency Domain Separation of DAS Multi-Source Aliased Signals[C],2023:1-4.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huaxin Gu]的文章
[Shuaiqi Liu]的文章
[Feihong Yu]的文章
百度学术
百度学术中相似的文章
[Huaxin Gu]的文章
[Shuaiqi Liu]的文章
[Feihong Yu]的文章
必应学术
必应学术中相似的文章
[Huaxin Gu]的文章
[Shuaiqi Liu]的文章
[Feihong Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。