题名 | Empirical Hypervolume Optimal µ-Distributions on Complex Pareto Fronts |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 2770-0097
|
ISBN | 978-1-6654-3064-7
|
会议录名称 | |
页码 | 433-440
|
会议日期 | 5-8 Dec. 2023
|
会议地点 | Mexico City, Mexico
|
摘要 | Hypervolume optimal µ-distribution is the distribution of µ solutions maximizing the hypervolume indicator of µ solutions on a specific Pareto front. Most studies have focused on simple Pareto fronts such as triangular and inverted triangular Pareto fronts. There is almost no study which focuses on complex Pareto fronts such as disconnected and partially degenerate Pareto fronts. However, most real-world multi-objective optimization problems have such a complex Pareto front. Thus, it is of great practical significance to study the hypervolume optimal µ-distribution on the complex Pareto fronts. In this paper, we study this issue by empirically showing the hypervolume optimal µ-distributions on the Pareto fronts of some representative artificial and real-world test problems. Our results show that, in general, maximizing the hypervolume indicator does not lead to uniformly distributed solution sets on the complex Pareto fronts. We also give some suggestions related to the use of the hypervolume indicator for performance evaluation of evolutionary multi-objective optimization algorithms. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20240415441989
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10372016 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673705 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ke Shang,Tianye Shu,Guotong Wu,et al. Empirical Hypervolume Optimal µ-Distributions on Complex Pareto Fronts[C],2023:433-440.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论