中文版 | English
题名

Empirical Hypervolume Optimal µ-Distributions on Complex Pareto Fronts

作者
DOI
发表日期
2023
ISSN
2770-0097
ISBN
978-1-6654-3064-7
会议录名称
页码
433-440
会议日期
5-8 Dec. 2023
会议地点
Mexico City, Mexico
摘要
Hypervolume optimal µ-distribution is the distribution of µ solutions maximizing the hypervolume indicator of µ solutions on a specific Pareto front. Most studies have focused on simple Pareto fronts such as triangular and inverted triangular Pareto fronts. There is almost no study which focuses on complex Pareto fronts such as disconnected and partially degenerate Pareto fronts. However, most real-world multi-objective optimization problems have such a complex Pareto front. Thus, it is of great practical significance to study the hypervolume optimal µ-distribution on the complex Pareto fronts. In this paper, we study this issue by empirically showing the hypervolume optimal µ-distributions on the Pareto fronts of some representative artificial and real-world test problems. Our results show that, in general, maximizing the hypervolume indicator does not lead to uniformly distributed solution sets on the complex Pareto fronts. We also give some suggestions related to the use of the hypervolume indicator for performance evaluation of evolutionary multi-objective optimization algorithms.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20240415441989
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10372016
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673705
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ke Shang,Tianye Shu,Guotong Wu,et al. Empirical Hypervolume Optimal µ-Distributions on Complex Pareto Fronts[C],2023:433-440.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ke Shang]的文章
[Tianye Shu]的文章
[Guotong Wu]的文章
百度学术
百度学术中相似的文章
[Ke Shang]的文章
[Tianye Shu]的文章
[Guotong Wu]的文章
必应学术
必应学术中相似的文章
[Ke Shang]的文章
[Tianye Shu]的文章
[Guotong Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。