题名 | Ensemble R2-based Hypervolume Contribution Approximation |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 2770-0097
|
ISBN | 978-1-6654-3064-7
|
会议录名称 | |
页码 | 1503-1510
|
会议日期 | 5-8 Dec. 2023
|
会议地点 | Mexico City, Mexico
|
摘要 | The hypervolume-based multi-objective evolutionary algorithms (HV-MOEAs) have proven to be highly effective in solving multi-objective optimization problems. However, the computation time of the hypervolume calculation increases significantly as the number of objectives increases. To address this issue, an R2-based hypervolume contribution approximation (R2-HVC) method was proposed. Nevertheless, the original R2-HVC generates a large number of vectors and computes the HVC only once. In this study, we propose an ensemble method based on the R2-HVC method. By using a small number of vectors for repetitive computation and majority voting, the ensemble method can reduce the probability of making incorrect choices. Experimental results show that the proposed method can improve the approximation accuracy while maintaining a similar computation time to the original R2-HVC method. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20240415441896
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10371823 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673709 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Guotong Wu,Tianye Shu,Yang Nan,et al. Ensemble R2-based Hypervolume Contribution Approximation[C],2023:1503-1510.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论