中文版 | English
题名

Initial Populations with a Few Heuristic Solutions Significantly Improve Evolutionary Multi-Objective Combinatorial Optimization

作者
DOI
发表日期
2023
ISSN
2770-0097
ISBN
978-1-6654-3064-7
会议录名称
页码
1398-1405
会议日期
5-8 Dec. 2023
会议地点
Mexico City, Mexico
摘要
Population initialization is a crucial and essential step in evolutionary multi-objective optimization (EMO) algorithms. The quality of the generated initial population can significantly affect the performance of an EMO algorithm. However, few studies have focused on designing a generalized initialization method to improve the performance of EMO algorithms in solving multi-objective combinatorial optimization (MOCO) problems. Most of the existing advanced initialization methods involve complex techniques tailored to the specific characteristics of the problems to be solved. In this paper, we propose a general and effective framework of population initialization for EMO algorithms, aiming to improve their performances in solving various MOCO problems. Our approach involves the inclusion of a few specific heuristic solutions, including extreme solutions and a center solution, into the initial population. This inclusion serves to guide the evolution of the population throughout the optimization process. Our experimental results show that initial populations with a few heuristic solutions significantly improve the performance of EMO algorithms. Algorithm behavior analysis and further study are also provided, allowing for a comprehensive understanding of the effectiveness and applicability of our proposed method.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20240415441860
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10371937
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673713
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Cheng Gong,Yang Nan,Lie Meng Pang,et al. Initial Populations with a Few Heuristic Solutions Significantly Improve Evolutionary Multi-Objective Combinatorial Optimization[C],2023:1398-1405.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng Gong]的文章
[Yang Nan]的文章
[Lie Meng Pang]的文章
百度学术
百度学术中相似的文章
[Cheng Gong]的文章
[Yang Nan]的文章
[Lie Meng Pang]的文章
必应学术
必应学术中相似的文章
[Cheng Gong]的文章
[Yang Nan]的文章
[Lie Meng Pang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。