题名 | Normalization in R2-Based Hypervolume and Hypervolume Contribution Approximation |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 2770-0097
|
ISBN | 978-1-6654-3064-7
|
会议录名称 | |
页码 | 449-456
|
会议日期 | 5-8 Dec. 2023
|
会议地点 | Mexico City, Mexico
|
摘要 | In this paper, we examine the effect of normalization in R2-based hypervolume and hypervolume contribution approximation. The fact is that the region with different scales on objective space brings approximation bias. The basic idea of normalization is to perform a coordinate transformation to make the shape of the approximated region more regular, and then transform it to obtain the final value according to the property of hypervolume and hypervolume contribution. The performance of normalization is evaluated on different datasets by comparing it with the original R2-based method. We use two different metrics to evaluate hypervolume and hypervolume contribution separately, and the results indicate that normalization does exactly improve the approximation accuracy and outperforms the original R2-based method. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20240415442059
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10371986 |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673714 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Guotong Wu,Tianye Shu,Ke Shang,et al. Normalization in R2-Based Hypervolume and Hypervolume Contribution Approximation[C],2023:449-456.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论