中文版 | English
题名

Enhanced Channel Estimation for OTFS-Assisted ISAC in Vehicular Networks: A Deep Learning Approach

作者
DOI
发表日期
2023
ISSN
2690-3334
ISBN
979-8-3503-4158-4
会议录名称
页码
703-707
会议日期
24-27 Aug. 2023
会议地点
Singapore, Singapore
摘要
This paper explores an orthogonal time frequency space (OTFS)-assisted integrated sensing and communication (ISAC) system in vehicular networks. We present a deep learning (DL)-based framework for the OTFS-assisted ISAC system, leveraging the advantages offered by the Delay-Doppler representation of the time-variant channel. The communication channel matrix is utilized within the framework to infer motion parameters, thereby enabling the establishment of an effective transmission protocol. Therefore, it is crucial to design a channel estimation method that simultaneously fulfills both sensing and communication performance requirements. To this end, a DL-based channel estimation approach is designed to obtain accurate channel state information (CSI), due to the powerful capability of neural networks [1]. Specifically, we model the channel estimation as a denoising problem from the embedded pilot scheme and employ a self-adaptive threshold submodule to eliminate irrelevant features. Finally, simulation results demonstrate that our proposed method can obtain accurate CSI with the available sensing performance.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20240715543155
EI主题词
Channel estimation ; Deep learning ; Frequency estimation
EI分类号
Ergonomics and Human Factors Engineering:461.4
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10349836
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673729
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.The Hong Kong Polytechnic University, Hong Kong, SAR, China
3.Taiyuan University of Technology, Taiyuan, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Xiaoqi Zhang,Hongjia Huang,Long Tan,et al. Enhanced Channel Estimation for OTFS-Assisted ISAC in Vehicular Networks: A Deep Learning Approach[C],2023:703-707.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiaoqi Zhang]的文章
[Hongjia Huang]的文章
[Long Tan]的文章
百度学术
百度学术中相似的文章
[Xiaoqi Zhang]的文章
[Hongjia Huang]的文章
[Long Tan]的文章
必应学术
必应学术中相似的文章
[Xiaoqi Zhang]的文章
[Hongjia Huang]的文章
[Long Tan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。