中文版 | English
题名

Abnormal Object Detection of the Transmission Lines with YOLOv5 and Federated Learning

作者
DOI
发表日期
2023
会议名称
IEEE International Conference on Development and Learning (ICDL)
ISBN
978-1-6654-7076-6
会议录名称
页码
512-517
会议日期
9-11 Nov. 2023
会议地点
Macau, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Detecting abnormal object intrusions of the transmission lines in a timely and effective manner is of great significance for the safe operation of the electrical power grid. However, due to the particularity and privacy policy of the power grid companies, there is a lack of available and effective dataset with open source. Besides, individuals tend to gather data in their commonly own regions, which would lead to data silos. In this paper, a dataset of the abnormal object intrusions of the transmission lines is first configured to meet the model training requirements. An improved abnormal object detection (AOD) method is proposed utilizing the federated learning. The FasterNet backbone and partial convolution are incorporated to improve the YOLOv5 based model detection speed. Further, the loss function Wise-IoU (WIoU) and Squeeze & Excitation Networks (SE) are applied to enhance the detection precision. Finally, the distributed training strategy of the federated learning is applied to overcome the data silos. Through the ablation experiments, practicality together with merits of the suggested approach are validated on the federated learning platform, achieving a delicate balance between the detection accuracy and speed with comparison analysis for the abnormal object detection in the transmission lines.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China["61973296","U1913201"] ; Shenzhen Science and Technology Innovation Commission Project["JSGG20210802154535003","JCYJ20220818101206015"] ; Guangdong Basic and Applied Basic Research Foundation[2021B1515120038]
WOS研究方向
Behavioral Sciences ; Computer Science ; Robotics
WOS类目
Behavioral Sciences ; Computer Science, Artificial Intelligence ; Robotics
WOS记录号
WOS:001172928700080
EI入藏号
20240415433287
EI主题词
Deep learning ; Electric power transmission ; Electric power transmission networks ; Object detection ; Object recognition
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Electric Power Transmission:706.1.1 ; Electric Power Lines and Equipment:706.2 ; Data Processing and Image Processing:723.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10364445
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673740
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Kaihong Zhang,Yimin Zhou. Abnormal Object Detection of the Transmission Lines with YOLOv5 and Federated Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:512-517.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kaihong Zhang]的文章
[Yimin Zhou]的文章
百度学术
百度学术中相似的文章
[Kaihong Zhang]的文章
[Yimin Zhou]的文章
必应学术
必应学术中相似的文章
[Kaihong Zhang]的文章
[Yimin Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。