中文版 | English
题名

Combating Coronary Calcium Scoring Bias for Non-gated CT by Semantic Learning on Gated CT

作者
DOI
发表日期
2023
会议名称
IEEE/CVF International Conference on Computer Vision (ICCV)
ISSN
2473-9936
ISBN
979-8-3503-0745-0
会议录名称
页码
2575-2583
会议日期
2-6 Oct. 2023
会议地点
Paris, France
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Coronary calcium scoring (CCS) can be quantified on non-gated or gated computed tomography (CT) for screening cardiovascular disease (CVD). And non-gated CT is used for routine coronary artery calcium (CAC) screening due to its affordability. However, artifacts of non-gated CT imaging, pose a significant challenge for automatic scoring. To combat the scoring bias caused by artifacts, we develop a novel semantic-prompt scoring siamese (SPSS) network for automatic CCS of non-gated CT. In SPSS, we establish a sharing network with regression supervised learning and semantic supervised learning. We train the SPSS by mixing non-gated CT without CAC mask and gated CT with CAC mask. In regression supervised learning, the network is trained to predict the CCS of non-gated CT. To combat the influence of motion artifacts, we introduce semantic supervised learning. We utilize gated CT to train the network to learn more accurate CAC semantic features. By integrating regression supervised learning and semantic supervised learning, the semantic information can prompt the regression supervised learning to accurately predict the CCS of non-gated CT. By conducting extensive experiments on publicly available dataset, we prove that the SPSS can alleviate the potential scoring bias introduced by pixel-wise artifact labels. Moreover, our experimental results show that the SPSS establishes state-of-the-art performance.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
General Program of National Natural Science Foundation of China[82272086]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Imaging Science & Photographic Technology
WOS记录号
WOS:001156680302066
EI入藏号
20240415432407
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10350855
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673742
专题南方科技大学
作者单位
1.CVTE Research, China
2.Yibicom Health Management Center, CVTE, China
3.Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Jiajian Li,Anwei Li,Jiansheng Fang,et al. Combating Coronary Calcium Scoring Bias for Non-gated CT by Semantic Learning on Gated CT[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:2575-2583.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiajian Li]的文章
[Anwei Li]的文章
[Jiansheng Fang]的文章
百度学术
百度学术中相似的文章
[Jiajian Li]的文章
[Anwei Li]的文章
[Jiansheng Fang]的文章
必应学术
必应学术中相似的文章
[Jiajian Li]的文章
[Anwei Li]的文章
[Jiansheng Fang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。