中文版 | English
题名

Polar-Net: A Clinical-Friendly Model for Alzheimer’s Disease Detection in OCTA Images

作者
通讯作者Zhao, Yitian
DOI
发表日期
2023
会议名称
26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
ISSN
0302-9743
EISSN
1611-3349
ISBN
9783031439896
会议录名称
卷号
14226 LNCS
页码
607-617
会议日期
October 8, 2023 - October 12, 2023
会议地点
Vancouver, BC, Canada
出版者
摘要
Optical Coherence Tomography Angiography (OCTA) is a promising tool for detecting Alzheimer’s disease (AD) by imaging the retinal microvasculature. Ophthalmologists commonly use region-based analysis, such as the ETDRS grid, to study OCTA image biomarkers and understand the correlation with AD. In this work, we propose a novel deep-learning framework called Polar-Net. Our approach involves mapping OCTA images from Cartesian coordinates to polar coordinates, which allows for the use of approximate sector convolution and enables the implementation of the ETDRS grid-based regional analysis method commonly used in clinical practice. Furthermore, Polar-Net incorporates clinical prior information of each sector region into the training process, which further enhances its performance. Additionally, our framework adapts to acquire the importance of the corresponding retinal region, which helps researchers and clinicians understand the model’s decision-making process in detecting AD and assess its conformity to clinical observations. Through evaluations on private and public datasets, we have demonstrated that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD. In addition, we also show that the two innovative modules introduced in our framework have a significant impact on improving overall performance.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
学校署名
其他
语种
英语
收录类别
资助项目
This work was supported in part by the National Science Foundation Program of China (62272444, 62103398), Zhejiang Provincial Natural Science Foundation of China (LR22F020008), the Youth Innovation Promotion Association CAS (2021298), the A*STAR AME Programmatic Funding Scheme Under Project A20H4b0141, and A*STAR Central Research Fund.
EI入藏号
20234314954944
EI主题词
Computer aided instruction ; Decision making ; Deep learning ; Image analysis ; Ophthalmology ; Regional planning
EI分类号
Regional Planning and Development:403.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Computer Applications:723.5 ; Optical Devices and Systems:741.3 ; Education:901.2 ; Management:912.2
来源库
EV Compendex
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673778
专题工学院_计算机科学与工程系
作者单位
1.Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
2.Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
3.School of Future Technology, South China University of Technology, Guangzhou, China
4.Pazhou Lab, Guangzhou, China
5.Institute of High Performance Computing, A*STAR, Singapore, Singapore
6.Department of Computer Science, Southern University of Science and Technology, Shenzhen, China
7.Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
8.Department of Computer Science, Edge Hill University, Ormskirk, United Kingdom
推荐引用方式
GB/T 7714
Liu, Shouyue,Hao, Jinkui,Xu, Yanwu,et al. Polar-Net: A Clinical-Friendly Model for Alzheimer’s Disease Detection in OCTA Images[C]:Springer Science and Business Media Deutschland GmbH,2023:607-617.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Shouyue]的文章
[Hao, Jinkui]的文章
[Xu, Yanwu]的文章
百度学术
百度学术中相似的文章
[Liu, Shouyue]的文章
[Hao, Jinkui]的文章
[Xu, Yanwu]的文章
必应学术
必应学术中相似的文章
[Liu, Shouyue]的文章
[Hao, Jinkui]的文章
[Xu, Yanwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。