中文版 | English
题名

VTwins: inferring causative microbial features from metagenomic data of limited samples

作者
通讯作者Kang, Yu
发表日期
2023-11-30
DOI
发表期刊
ISSN
2095-9273
EISSN
2095-9281
卷号68期号:22页码:2806-2816
摘要
It is difficult to infer causality from high-dimension metagenomic data due to interference from numerous confounders. By imitating the twin studies in genetic research, we develop a straightforward method—virtual twins (VTwins)—to eliminate the confounder effects by transforming the original cohort into a paired cohort of "Twin" samples with distinct phenotypes but matched taxonomic profiles. The results show that VTwins outperforms the conventional approach in the sensitivity of identifying causative features and only requires a 10-fold reduced sample size for recalling disease-associated microbes or pathways, as tested by simulated and empirical data. Benchmark test with other 16 kinds of software further validates the power and applicability of VTwins for handling high-dimension compositional datasets and mining causalities in metagenomic research. In conclusion, VTwins is straightforward and effective in handling high-diversity, high-dimension compositional data, promising applications in mining causalities for metagenomic and potentially other omics data. VTwins is open access and available at https://github.com/mengqingren/VTwins.
© 2023 Science China Press. Published by Elsevier B.V. and Science China Press.
关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
This work was supported by the National Natural Science Foundation of China ( 31970568 and 32371537 ) and the National Science and Technology Major Project of China ( 2018ZX10712001-018-002 and 2021YFC2301003 ).
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001133321300001
出版者
EI入藏号
20234515009524
EI主题词
Benchmarking ; Clustering algorithms
EI分类号
Computer Applications:723.5 ; Information Sources and Analysis:903.1
来源库
EV Compendex
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673779
专题南方科技大学医学院
南方科技大学第二附属医院
作者单位
1.CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics Chinese Academy of Sciences China National Center for Bioinformation, Beijing; 100101, China
2.School of Medicine, Southern University of Science and Technology, Shenzhen; 518055, China
3.National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen; 518100, China
4.International Cancer Center, Shenzhen University Medical School, Shenzhen; 518055, China
5.Department of Biomedical Informatics, The Ohio State University, Columbus; OH; 43210, United States
6.University of Chinese Academy of Sciences, Beijing; 100190, China
第一作者单位南方科技大学医学院;  南方科技大学第二附属医院
推荐引用方式
GB/T 7714
Meng, Qingren,Zhou, Qian,Shi, Shuo,et al. VTwins: inferring causative microbial features from metagenomic data of limited samples[J]. Science Bulletin,2023,68(22):2806-2816.
APA
Meng, Qingren.,Zhou, Qian.,Shi, Shuo.,Xiao, Jingfa.,Ma, Qin.,...&Kang, Yu.(2023).VTwins: inferring causative microbial features from metagenomic data of limited samples.Science Bulletin,68(22),2806-2816.
MLA
Meng, Qingren,et al."VTwins: inferring causative microbial features from metagenomic data of limited samples".Science Bulletin 68.22(2023):2806-2816.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Meng, Qingren]的文章
[Zhou, Qian]的文章
[Shi, Shuo]的文章
百度学术
百度学术中相似的文章
[Meng, Qingren]的文章
[Zhou, Qian]的文章
[Shi, Shuo]的文章
必应学术
必应学术中相似的文章
[Meng, Qingren]的文章
[Zhou, Qian]的文章
[Shi, Shuo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。