中文版 | English
题名

BEDCOE: Borderline Enhanced Disjunct Cluster Based Oversampling Ensemble for Online Multi-Class Imbalance Learning

作者
通讯作者Cheung, Yiu-Ming; Yao, Xin
DOI
发表日期
2023-09-28
会议名称
26th European Conference on Artificial Intelligence, ECAI 2023
ISSN
0922-6389
ISBN
9781643684369
会议录名称
卷号
372
页码
1414-1421
会议日期
September 30, 2023 - October 4, 2023
会议地点
Krakow, Poland
会议录编者/会议主办者
Amazon Alexa; APTIV; et al.; Hewlett Packard; IDEAS; Software Force
出版者
摘要
Multi-class imbalance learning usually confronts more challenges especially when learning from streaming data. Most existing methods focus on manipulating class imbalance ratios, disregarding other data properties such as the borderline and the disjunct. Recent studies have shown non-negligible impact of disregarding these properties on deteriorating predictive performance. Online multi-class imbalance would further exacerbate such negative impact. To abridge the research gap of online multi-class imbalance learning, we propose to enhance the number of training times of borderline samples based on the disjunct class-wise clusters that are adaptively constructed over time for each class individually. Specifically, we propose a borderline enhanced strategy for ensemble aiming to increase the number of training times of samples neighboring to borderline areas of different classes. We also propose to generate synthetic samples for training based on the adaptively learned disjunct clusters that are maintained for each class individually online, catering for online multi-class imbalance problem directly. These two components construct the Borderline Enhanced Disjunct Cluster Based Oversampling Ensemble (BEDCOE). Experimental studies are conducted and demonstrate the effectiveness of BEDCOE and each of its components in dealing with online multi-class imbalance.
© 2023 The Authors.
学校署名
第一 ; 通讯
语种
英语
收录类别
资助项目
This work was supported by National Natural Science Foundation of China (NSFC) under Grant No. 62002148 and Grant No. 62250710682, Guangdong Provincial Key Laboratory under Grant No. 2020B121201001, the Program for Guangdong Introducing Innovative and Enterpreneurial Teams under Grant No. 2017ZT07X386, and Research Institute of Trustworthy Autonomous Systems (RITAS).
EI入藏号
20234515035227
EI主题词
Machine learning
EI分类号
Artificial Intelligence:723.4
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673798
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology (SUSTech), Shenzhen, China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
3.Department of Computer Science, Hong Kong Baptist University, Hong Kong
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Li, Shuxian,Song, Liyan,Cheung, Yiu-Ming,et al. BEDCOE: Borderline Enhanced Disjunct Cluster Based Oversampling Ensemble for Online Multi-Class Imbalance Learning[C]//Amazon Alexa; APTIV; et al.; Hewlett Packard; IDEAS; Software Force:IOS Press BV,2023:1414-1421.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Shuxian]的文章
[Song, Liyan]的文章
[Cheung, Yiu-Ming]的文章
百度学术
百度学术中相似的文章
[Li, Shuxian]的文章
[Song, Liyan]的文章
[Cheung, Yiu-Ming]的文章
必应学术
必应学术中相似的文章
[Li, Shuxian]的文章
[Song, Liyan]的文章
[Cheung, Yiu-Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。