中文版 | English
题名

ACT-Net: Anchor-Context Action Detection in Surgery Videos

作者
通讯作者Hu, Yan; Duan, Jinming; Liu, Jiang
共同第一作者Hao, Luoying; Hu, Yan
DOI
发表日期
2023
会议名称
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-43995-7
会议录名称
卷号
14228
会议日期
OCT 08-12, 2023
会议地点
null,Vancouver,CANADA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Recognition and localization of surgical detailed actions is an essential component of developing a context-aware decision support system. However, most existing detection algorithms fail to provide high-accuracy action classes even having their locations, as they do not consider the surgery procedure's regularity in the whole video. This limitation hinders their application. Moreover, implementing the predictions in clinical applications seriously needs to convey model confidence to earn entrustment, which is unexplored in surgical action prediction. In this paper, to accurately detect fine-grained actions that happen at every moment, we propose an anchor-context action detection network (ACT-Net), including an anchor-context detection (ACD) module and a class conditional diffusion (CCD) module, to answer the following questions: 1) where the actions happen; 2) what actions are; 3) how confidence predictions are. Specifically, the proposed ACD module spatially and temporally highlights the regions interacting with the extracted anchor in surgery video, which outputs action location and its class distribution based on anchor-context interactions. Considering the full distribution of action classes in videos, the CCD module adopts a denoising diffusion-based generative model conditioned on our ACD estimator to further reconstruct accurately the action predictions. Moreover, we utilize the stochastic nature of the diffusion model outputs to access model confidence for each prediction. Our method reports the state-of-the-art performance, with improvements of 4.0% mAP against baseline on the surgical video dataset.
关键词
学校署名
共同第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
General Program of National Natural Science Foundation of China["82272086","82102189"] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515012195] ; Shenzhen Stable Support Plan Program["20220815111736001","20200925174052004"] ; Agency for Science, Technology and Research (A*STAR) Advanced Manufacturing and Engineering (AME) Programmatic Fund[A20H4b0141]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Biomedical
WOS记录号
WOS:001109638800019
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673810
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.School of Computer Science, University of Birmingham, Birmingham, United Kingdom
2.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
4.Third Medical Center of Chinese PLAGH, Beijing, China
5.Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Hao, Luoying,Hu, Yan,Lin, Wenjun,et al. ACT-Net: Anchor-Context Action Detection in Surgery Videos[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hao, Luoying]的文章
[Hu, Yan]的文章
[Lin, Wenjun]的文章
百度学术
百度学术中相似的文章
[Hao, Luoying]的文章
[Hu, Yan]的文章
[Lin, Wenjun]的文章
必应学术
必应学术中相似的文章
[Hao, Luoying]的文章
[Hu, Yan]的文章
[Lin, Wenjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。