中文版 | English
题名

Clinical Pixel Feature Recalibration Module for Ophthalmic Image Classification

作者
通讯作者Zhang, Xiaoqing
DOI
发表日期
2023
会议名称
32nd International Conference on Artificial Neural Networks (ICANN)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-44215-5
会议录名称
卷号
14257
会议日期
SEP 26-29, 2023
会议地点
null,Heraklion,GREECE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Ophthalmic image examination has become a commonly-acknowledged way for ocular disease screening and diagnosis. Clinical features extracted from ophthalmic images play different roles in affecting clinicians making diagnosis results, but how to incorporate these clinical features into convolutional neural network (CNN) representations has been less studied. In this paper, we propose a simple yet practical module, Clinical Pixel Feature Recalibration Module (CPF), aiming to exploit the potential of clinical features to improve the ocular disease recognition performance of CNNs. CPF first extracts clinical pixel features from each spatial position of all feature maps by clinical cross-channel pooling, then estimates each spatial position recalibration weight in a pixel-independent clinical fusion. By infusing the relative importance of clinical features into feature maps at the pixel level, CPF is supposed to enhance the representational ability of CNNs. Our CPF is easily inserted into existing CNNs with negligible overhead. We conduct comprehensive experiments on two publicly available ophthalmic image datasets and CIFAR datasets, and the results show the superiority and generation ability of CPF over advanced attention methods. Furthermore, this paper presents an in-depth weight visualization analysis to investigate the inherent behavior of CPF, aiming to improve the interpretability of CNNs in the decision-making process.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001156953700008
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673812
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Zhao, JiLu,Zhang, Xiaoqing,Wu, Xiao,et al. Clinical Pixel Feature Recalibration Module for Ophthalmic Image Classification[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, JiLu]的文章
[Zhang, Xiaoqing]的文章
[Wu, Xiao]的文章
百度学术
百度学术中相似的文章
[Zhao, JiLu]的文章
[Zhang, Xiaoqing]的文章
[Wu, Xiao]的文章
必应学术
必应学术中相似的文章
[Zhao, JiLu]的文章
[Zhang, Xiaoqing]的文章
[Wu, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。