题名 | Clinical Pixel Feature Recalibration Module for Ophthalmic Image Classification |
作者 | |
通讯作者 | Zhang, Xiaoqing |
DOI | |
发表日期 | 2023
|
会议名称 | 32nd International Conference on Artificial Neural Networks (ICANN)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-44215-5
|
会议录名称 | |
卷号 | 14257
|
会议日期 | SEP 26-29, 2023
|
会议地点 | null,Heraklion,GREECE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Ophthalmic image examination has become a commonly-acknowledged way for ocular disease screening and diagnosis. Clinical features extracted from ophthalmic images play different roles in affecting clinicians making diagnosis results, but how to incorporate these clinical features into convolutional neural network (CNN) representations has been less studied. In this paper, we propose a simple yet practical module, Clinical Pixel Feature Recalibration Module (CPF), aiming to exploit the potential of clinical features to improve the ocular disease recognition performance of CNNs. CPF first extracts clinical pixel features from each spatial position of all feature maps by clinical cross-channel pooling, then estimates each spatial position recalibration weight in a pixel-independent clinical fusion. By infusing the relative importance of clinical features into feature maps at the pixel level, CPF is supposed to enhance the representational ability of CNNs. Our CPF is easily inserted into existing CNNs with negligible overhead. We conduct comprehensive experiments on two publicly available ophthalmic image datasets and CIFAR datasets, and the results show the superiority and generation ability of CPF over advanced attention methods. Furthermore, this paper presents an in-depth weight visualization analysis to investigate the inherent behavior of CPF, aiming to improve the interpretability of CNNs in the decision-making process. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:001156953700008
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673812 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China 2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhao, JiLu,Zhang, Xiaoqing,Wu, Xiao,et al. Clinical Pixel Feature Recalibration Module for Ophthalmic Image Classification[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论