中文版 | English
题名

Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater

作者
通讯作者Wan, Fang; Song, Chaoyang
发表日期
2023
DOI
发表期刊
EISSN
2640-4567
摘要
Robots play a critical role as the physical agent of human operators in exploring the ocean. However, it remains challenging to grasp objects reliably while fully submerging under a highly pressurized aquatic environment with little visible light, mainly due to the fluidic interference on the tactile mechanics between the finger and object surfaces. This study investigates the transferability of grasping knowledge from on-land to underwater via a vision-based soft robotic finger that learns 6D forces and torques (FT) using a supervised variational autoencoder (SVAE). A high-framerate camera captures the whole-body deformations while a soft robotic finger interacts with physical objects on-land and underwater. Results show that the trained SVAE model learns a series of latent representations of the soft mechanics transferable from land to water, presenting a superior adaptation to the changing environments against commercial FT sensors. Soft, delicate, and reactive grasping enabled by tactile intelligence enhances the gripper's underwater interaction with improved reliability and robustness at a much-reduced cost, paving the path for learning-based intelligent grasping to support fundamental scientific discoveries in environmental and ocean research.

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
This work was partly supported by the Ministry of Science and Technology of China (2022YFB4701200), the National Natural Science Foundation of China (62206119), the Science, Technology, and Innovation Commission of Shenzhen Municipality (ZDSYS20220527171403009 and JCYJ20220818100417038), Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in Universities, and the SUSTech‐MIT Joint Centers for Mechanical Engineering Research and Education.
WOS研究方向
Automation & Control Systems ; Computer Science ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Robotics
WOS记录号
WOS:001087503800001
出版者
EI入藏号
20234314946987
EI主题词
Robotic Arms
EI分类号
Artificial Intelligence:723.4 ; Robotics:731.5
来源库
EV Compendex
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673820
专题工学院_机械与能源工程系
工学院_海洋科学与工程系
创新创意设计学院
作者单位
1.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
2.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
3.Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing, Southern University of Science and Technology, Shenzhen; 518055, China
4.School of Design, Southern University of Science and Technology, Guangdong, Shenzhen; 518055, China
5.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Guangdong, Shenzhen; 518055, China
第一作者单位机械与能源工程系
通讯作者单位南方科技大学;  创新创意设计学院
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Guo, Ning,Han, Xudong,Liu, Xiaobo,et al. Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater[J]. Advanced Intelligent Systems,2023.
APA
Guo, Ning.,Han, Xudong.,Liu, Xiaobo.,Zhong, Shuqiao.,Zhou, Zhiyuan.,...&Song, Chaoyang.(2023).Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater.Advanced Intelligent Systems.
MLA
Guo, Ning,et al."Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater".Advanced Intelligent Systems (2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
23-J-AIS-AutoencodeS(4386KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo, Ning]的文章
[Han, Xudong]的文章
[Liu, Xiaobo]的文章
百度学术
百度学术中相似的文章
[Guo, Ning]的文章
[Han, Xudong]的文章
[Liu, Xiaobo]的文章
必应学术
必应学术中相似的文章
[Guo, Ning]的文章
[Han, Xudong]的文章
[Liu, Xiaobo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 23-J-AIS-AutoencodeSoftTouch.pdf
格式: Adobe PDF
文件名: 23-J-AIS-AutoencodeSoftTouch.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。