题名 | Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater |
作者 | |
通讯作者 | Wan, Fang; Song, Chaoyang |
发表日期 | 2023
|
DOI | |
发表期刊 | |
EISSN | 2640-4567
|
摘要 | Robots play a critical role as the physical agent of human operators in exploring the ocean. However, it remains challenging to grasp objects reliably while fully submerging under a highly pressurized aquatic environment with little visible light, mainly due to the fluidic interference on the tactile mechanics between the finger and object surfaces. This study investigates the transferability of grasping knowledge from on-land to underwater via a vision-based soft robotic finger that learns 6D forces and torques (FT) using a supervised variational autoencoder (SVAE). A high-framerate camera captures the whole-body deformations while a soft robotic finger interacts with physical objects on-land and underwater. Results show that the trained SVAE model learns a series of latent representations of the soft mechanics transferable from land to water, presenting a superior adaptation to the changing environments against commercial FT sensors. Soft, delicate, and reactive grasping enabled by tactile intelligence enhances the gripper's underwater interaction with improved reliability and robustness at a much-reduced cost, paving the path for learning-based intelligent grasping to support fundamental scientific discoveries in environmental and ocean research.
© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | This work was partly supported by the Ministry of Science and Technology of China (2022YFB4701200), the National Natural Science Foundation of China (62206119), the Science, Technology, and Innovation Commission of Shenzhen Municipality (ZDSYS20220527171403009 and JCYJ20220818100417038), Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in Universities, and the SUSTech‐MIT Joint Centers for Mechanical Engineering Research and Education.
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Robotics
|
WOS记录号 | WOS:001087503800001
|
出版者 | |
EI入藏号 | 20234314946987
|
EI主题词 | Robotic Arms
|
EI分类号 | Artificial Intelligence:723.4
; Robotics:731.5
|
来源库 | EV Compendex
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673820 |
专题 | 工学院_机械与能源工程系 工学院_海洋科学与工程系 创新创意设计学院 |
作者单位 | 1.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen; 518055, China 2.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China 3.Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing, Southern University of Science and Technology, Shenzhen; 518055, China 4.School of Design, Southern University of Science and Technology, Guangdong, Shenzhen; 518055, China 5.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Guangdong, Shenzhen; 518055, China |
第一作者单位 | 机械与能源工程系 |
通讯作者单位 | 南方科技大学; 创新创意设计学院 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Guo, Ning,Han, Xudong,Liu, Xiaobo,et al. Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater[J]. Advanced Intelligent Systems,2023.
|
APA |
Guo, Ning.,Han, Xudong.,Liu, Xiaobo.,Zhong, Shuqiao.,Zhou, Zhiyuan.,...&Song, Chaoyang.(2023).Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater.Advanced Intelligent Systems.
|
MLA |
Guo, Ning,et al."Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater".Advanced Intelligent Systems (2023).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
23-J-AIS-AutoencodeS(4386KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论