中文版 | English
题名

PAS-Net: Rapid Prediction of Antibiotic Susceptibility from Fluorescence Images of Bacterial Cells Using Parallel Dual-Branch Network

作者
通讯作者Lei, Baiying
DOI
发表日期
2023
会议名称
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-43992-6
会议录名称
卷号
14227
会议日期
OCT 08-12, 2023
会议地点
null,Vancouver,CANADA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
In recent years, the emergence and rapid spread of multi-drug resistant bacteria has become a serious threat to global public health. Antibiotic susceptibility testing (AST) is used clinically to determine the susceptibility of bacteria to antibiotics, thereby guiding physicians in the rational use of drugs as well as slowing down the process of bacterial resistance. However, traditional phenotypic AST methods based on bacterial culture are time-consuming and laborious (usually 24-72 h). Because delayed identification of drug-resistant bacteria increases patient morbidity and mortality, there is an urgent clinical need for a rapid AST method that allows physicians to prescribe appropriate antibiotics promptly. In this paper, we present a parallel dual-branch network (i.e., PAS-Net) to predict bacterial antibiotic susceptibility from fluorescent images. Specifically, we use the feature interaction unit (FIU) as a connecting bridge to align and fuse the local features from the convolutional neural network (CNN) branch (C-branch) and the global representations from the Transformer branch (T-branch) interactively and effectively. Moreover, we propose a new hierarchical multi-head self-attention (HMSA) module that reduces the computational overhead while maintaining the global relationship modeling capability of the T-branch. PAS-Net is experimented on a fluorescent image dataset of clinically isolated Pseudomonas aeruginosa (PA) with promising prediction performance. Also, we verify the generalization performance of our algorithm in fluorescence image classification on two HEp-2 cell public datasets.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["62101338","61871274","32270196","U1902209"]
WOS研究方向
Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001109637500056
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673834
专题南方科技大学医学院
作者单位
1.National-Regional Key Technology Engineering Laboratory for MedicalUltrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen; 518060, China
2.School of Medicine, Southern University of Science and Technology, Shenzhen; 518055, China
推荐引用方式
GB/T 7714
Xiong, Wei,Yu, Kaiwei,Yang, Liang,et al. PAS-Net: Rapid Prediction of Antibiotic Susceptibility from Fluorescence Images of Bacterial Cells Using Parallel Dual-Branch Network[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiong, Wei]的文章
[Yu, Kaiwei]的文章
[Yang, Liang]的文章
百度学术
百度学术中相似的文章
[Xiong, Wei]的文章
[Yu, Kaiwei]的文章
[Yang, Liang]的文章
必应学术
必应学术中相似的文章
[Xiong, Wei]的文章
[Yu, Kaiwei]的文章
[Yang, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。