中文版 | English
题名

Sequence-Graph Fusion Neural Network for User Mobile App Behavior Prediction

作者
通讯作者Song, Xuan
DOI
发表日期
2023
会议名称
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
ISSN
2945-9133
EISSN
1611-3349
ISBN
978-3-031-43426-6
会议录名称
卷号
14174
会议日期
SEP 18-22, 2023
会议地点
null,Turin,ITALY
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
In recent years, mobile applications (apps) on smartphones have shown explosive growth. Massive and diversified apps greatly affect user experience. As a result, user mobile app behavior prediction has become increasingly important. Existed algorithms based on deep learning mainly conduct sequence modeling on the app usage historical records, which are insufficient in capturing the similarity between users and apps, and ignore the semantic associations in app usage. Although some works have tried to model from the perspective of graph structure recently, the two types of modeling methods have not been combined, and whether they are complementary has not been explored. Therefore, we propose an SGFNN model based on sequence combined graph modeling, which is already publicly available as the GitHub repository https://github.com/ZAY113/SGFNN. Sequence Block, BipGraph Block, and HyperGraph Block are used to capture the user mobile app behavior short-term pattern, the similarity between users and apps, and the semantic relations of hyperedge "user-time-location-app", respectively. Two real-world datasets are selected in our experiments. When the app sequence length is 4, the prediction accuracy of Top1, Top5, and Top10 reaches 36.08%, 68.39%, 79.02% and 51.55%, 87.57%, 95.62%, respectively. The experimental results show that the two modeling methods can be combined to improve prediction accuracy, and the information extracted from them is complementary.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key Research and Development Project of China[2021YFB1714400]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001156143700007
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673847
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Shenzhen, China
2.The University of Tokyo, Tokyo, Japan
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Wang, Yizhuo,Jiang, Renhe,Liu, Hangchen,et al. Sequence-Graph Fusion Neural Network for User Mobile App Behavior Prediction[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Yizhuo]的文章
[Jiang, Renhe]的文章
[Liu, Hangchen]的文章
百度学术
百度学术中相似的文章
[Wang, Yizhuo]的文章
[Jiang, Renhe]的文章
[Liu, Hangchen]的文章
必应学术
必应学术中相似的文章
[Wang, Yizhuo]的文章
[Jiang, Renhe]的文章
[Liu, Hangchen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。