题名 | Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation |
作者 | |
通讯作者 | Liu, Jiang |
DOI | |
发表日期 | 2023
|
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-43986-5
|
会议录名称 | |
卷号 | 14225
|
会议日期 | OCT 08-12, 2023
|
会议地点 | null,Vancouver,CANADA
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | The annotation scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models. Specifically, models trained on limited data may not generalize well to other unseen data domains, resulting in a domain shift issue. Consequently, domain generalization (DG) is developed to boost the performance of segmentation models on unseen domains. However, the DG setup requires multiple source domains, which impedes the efficient deployment of segmentation algorithms in clinical scenarios. To address this challenge and improve the segmentation model's generalizability, we propose a novel approach called the Frequency-mixed Single-source Domain Generalization method (FreeSDG). By analyzing the frequency's effect on domain discrepancy, FreeSDG leverages a mixed frequency spectrum to augment the single-source domain. Additionally, self-supervision is constructed in the domain augmentation to learn robust context-aware representations for the segmentation task. Experimental results on five datasets of three modalities demonstrate the effectiveness of the proposed algorithm. FreeSDG outperforms state-of-the-art methods and significantly improves the segmentation model's generalizability. Therefore, FreeSDG provides a promising solution for enhancing the generalization of medical image segmentation models, especially when annotated data is scarce. The code is available at https://github.com/liamheng/Non-IID_Medical_Image_Segmentation. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Guangdong Basic and Applied Basic Research Foundation[2020A1515110286]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:001109635100013
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673849 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 南方科技大学医院 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China 2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 3.Medical Intelligence and Innovation Academy, Southern University of Science and Technology, Shenzhen, China 4.Southern University of Science and Technology Hospital, Shenzhen, China 5.Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore 6.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 南方科技大学 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系; 南方科技大学 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Li, Heng,Li, Haojin,Zhao, Wei,et al. Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论