中文版 | English
题名

Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation

作者
通讯作者Liu, Jiang
DOI
发表日期
2023
会议名称
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-43986-5
会议录名称
卷号
14225
会议日期
OCT 08-12, 2023
会议地点
null,Vancouver,CANADA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
The annotation scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models. Specifically, models trained on limited data may not generalize well to other unseen data domains, resulting in a domain shift issue. Consequently, domain generalization (DG) is developed to boost the performance of segmentation models on unseen domains. However, the DG setup requires multiple source domains, which impedes the efficient deployment of segmentation algorithms in clinical scenarios. To address this challenge and improve the segmentation model's generalizability, we propose a novel approach called the Frequency-mixed Single-source Domain Generalization method (FreeSDG). By analyzing the frequency's effect on domain discrepancy, FreeSDG leverages a mixed frequency spectrum to augment the single-source domain. Additionally, self-supervision is constructed in the domain augmentation to learn robust context-aware representations for the segmentation task. Experimental results on five datasets of three modalities demonstrate the effectiveness of the proposed algorithm. FreeSDG outperforms state-of-the-art methods and significantly improves the segmentation model's generalizability. Therefore, FreeSDG provides a promising solution for enhancing the generalization of medical image segmentation models, especially when annotated data is scarce. The code is available at https://github.com/liamheng/Non-IID_Medical_Image_Segmentation.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Guangdong Basic and Applied Basic Research Foundation[2020A1515110286]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001109635100013
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673849
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
南方科技大学医院
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.Medical Intelligence and Innovation Academy, Southern University of Science and Technology, Shenzhen, China
4.Southern University of Science and Technology Hospital, Shenzhen, China
5.Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
6.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院;  南方科技大学
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系;  南方科技大学
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Li, Heng,Li, Haojin,Zhao, Wei,et al. Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Heng]的文章
[Li, Haojin]的文章
[Zhao, Wei]的文章
百度学术
百度学术中相似的文章
[Li, Heng]的文章
[Li, Haojin]的文章
[Zhao, Wei]的文章
必应学术
必应学术中相似的文章
[Li, Heng]的文章
[Li, Haojin]的文章
[Zhao, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。