中文版 | English
题名

ARConvL: Adaptive Region-Based Convolutional Learning for Multi-class Imbalance Classification

作者
通讯作者Song, Liyan
DOI
发表日期
2023
会议名称
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
ISSN
2945-9133
EISSN
1611-3349
ISBN
978-3-031-43414-3
会议录名称
卷号
14170
会议日期
SEP 18-22, 2023
会议地点
null,Turin,ITALY
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Real-world image classification usually suffers from the multi-class imbalance issue, probably causing unsatisfactory performance, especially on minority classes. A typical way to address such problem is to adjust the loss function of deep networks by making use of class imbalance ratios. However, such static between-class imbalance ratios cannot monitor the changing latent feature distributions that are continuously learned by the deep network throughout training epochs, potentially failing in helping the loss function adapt to the latest class imbalance status of the current training epoch. To address this issue, we propose an adaptive loss to monitor the evolving learning of latent feature distributions. Specifically, the class-wise feature distribution is derived based on the region loss with the objective of accommodating feature points of this class. The multi-class imbalance issue can then be addressed based on the derived class regions from two perspectives: first, an adaptive distribution loss is proposed to optimize class-wise latent feature distributions where different classes would converge within the regions of a similar size, directly tackling the multi-class imbalance problem; second, an adaptive margin is proposed to incorporate with the cross-entropy loss to enlarge the between-class discrimination, further alleviating the class imbalance issue. An adaptive region-based convolutional learning method is ultimately produced based on the adaptive distribution loss and the adaptive margin cross-entropy loss. Experimental results based on public image sets demonstrate the effectiveness and robustness of our approach in dealing with varying levels of multi-class imbalance issues.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China (NSFC)["62002148","62250710682"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001156138300007
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673860
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology (SUSTech), Shenzhen, China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
3.Department of Computer Science, Hong Kong Baptist University, China
4.RAMS Reliability Technology Lab, Huawei Technology Co., Ltd., Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Li, Shuxian,Song, Liyan,Wu, Xiaoyu,et al. ARConvL: Adaptive Region-Based Convolutional Learning for Multi-class Imbalance Classification[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Shuxian]的文章
[Song, Liyan]的文章
[Wu, Xiaoyu]的文章
百度学术
百度学术中相似的文章
[Li, Shuxian]的文章
[Song, Liyan]的文章
[Wu, Xiaoyu]的文章
必应学术
必应学术中相似的文章
[Li, Shuxian]的文章
[Song, Liyan]的文章
[Wu, Xiaoyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。