中文版 | English
题名

Prior-SSL: A Thickness Distribution Prior and Uncertainty Guided Semi-supervised Learning Method for Choroidal Segmentation in OCT Images

作者
通讯作者Liu, Jiang
DOI
发表日期
2023
会议名称
32nd International Conference on Artificial Neural Networks (ICANN)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-44209-4
会议录名称
卷号
14255
会议日期
SEP 26-29, 2023
会议地点
null,Heraklion,GREECE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Choroid structure is crucial for the diagnosis of ocular diseases, and deep supervised learning (SL) techniques have been widely applied to segment the choroidal structure based on OCT images. However, SL requires massive annotated data, which is difficult to obtain. Researchers have explored semi-supervised learning (SSL) methods based on consistency regularization and achieved strong performance. However, these methods suffer from heavy computational burdens and introduce noise that hinders the training process. To address these issues, we propose a thickness distribution prior and uncertainty aware pseudo-label selection SSL framework (Prior-SSL) for OCT choroidal segmentation. Specifically, we compute the instance-level uncertainty of the pseudo-label candidate, which significantly reduces the computational burden of uncertainty estimation. In addition, we consider the physiological characteristics of the choroid, explore the choroidal thickness distribution as prior knowledge in the pseudo-label selection procedure, and thereby obtain more reliable and accurate pseudo-labels. Finally, these two branches are combined via a Modified AND-Gate (MAG) to assign confidence levels to pseudo-label candidates. We achieve state-of-the-art performance for the choroidal segmentation task on the GOALS and NIDEK OCT datasets. Ablation studies verify the effectiveness of the Prior-SSL in selecting high-quality pseudo-labels.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
General Program of National Natural Science Foundation of China[82272086] ; Shenzhen Natural Science Fund["JCYJ20200109140820699","20200925174052004"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001156957400046
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673875
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Harbin Institute of Technology, Harbin, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
3.TOMEY Corporation, Nagoya; 4510051, Japan
4.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen; 518055, China
5.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen; 518055, China
6.Singapore Eye Research Institute, Singapore; 169856, Singapore
7.School of Computer Science, University of Nottingham Ningbo China, Ningbo; 315100, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院;  南方科技大学
推荐引用方式
GB/T 7714
Zhang, Huihong,Zhang, Xiaoqing,Zhang, Yinlin,et al. Prior-SSL: A Thickness Distribution Prior and Uncertainty Guided Semi-supervised Learning Method for Choroidal Segmentation in OCT Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Huihong]的文章
[Zhang, Xiaoqing]的文章
[Zhang, Yinlin]的文章
百度学术
百度学术中相似的文章
[Zhang, Huihong]的文章
[Zhang, Xiaoqing]的文章
[Zhang, Yinlin]的文章
必应学术
必应学术中相似的文章
[Zhang, Huihong]的文章
[Zhang, Xiaoqing]的文章
[Zhang, Yinlin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。