题名 | Prior-SSL: A Thickness Distribution Prior and Uncertainty Guided Semi-supervised Learning Method for Choroidal Segmentation in OCT Images |
作者 | |
通讯作者 | Liu, Jiang |
DOI | |
发表日期 | 2023
|
会议名称 | 32nd International Conference on Artificial Neural Networks (ICANN)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-44209-4
|
会议录名称 | |
卷号 | 14255
|
会议日期 | SEP 26-29, 2023
|
会议地点 | null,Heraklion,GREECE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Choroid structure is crucial for the diagnosis of ocular diseases, and deep supervised learning (SL) techniques have been widely applied to segment the choroidal structure based on OCT images. However, SL requires massive annotated data, which is difficult to obtain. Researchers have explored semi-supervised learning (SSL) methods based on consistency regularization and achieved strong performance. However, these methods suffer from heavy computational burdens and introduce noise that hinders the training process. To address these issues, we propose a thickness distribution prior and uncertainty aware pseudo-label selection SSL framework (Prior-SSL) for OCT choroidal segmentation. Specifically, we compute the instance-level uncertainty of the pseudo-label candidate, which significantly reduces the computational burden of uncertainty estimation. In addition, we consider the physiological characteristics of the choroid, explore the choroidal thickness distribution as prior knowledge in the pseudo-label selection procedure, and thereby obtain more reliable and accurate pseudo-labels. Finally, these two branches are combined via a Modified AND-Gate (MAG) to assign confidence levels to pseudo-label candidates. We achieve state-of-the-art performance for the choroidal segmentation task on the GOALS and NIDEK OCT datasets. Ablation studies verify the effectiveness of the Prior-SSL in selecting high-quality pseudo-labels. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | General Program of National Natural Science Foundation of China[82272086]
; Shenzhen Natural Science Fund["JCYJ20200109140820699","20200925174052004"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001156957400046
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673875 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Harbin Institute of Technology, Harbin, China 2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen; 518055, China 3.TOMEY Corporation, Nagoya; 4510051, Japan 4.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen; 518055, China 5.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen; 518055, China 6.Singapore Eye Research Institute, Singapore; 169856, Singapore 7.School of Computer Science, University of Nottingham Ningbo China, Ningbo; 315100, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang, Huihong,Zhang, Xiaoqing,Zhang, Yinlin,et al. Prior-SSL: A Thickness Distribution Prior and Uncertainty Guided Semi-supervised Learning Method for Choroidal Segmentation in OCT Images[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论