中文版 | English
题名

SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation

作者
通讯作者Meng, Max Q.-H.
DOI
发表日期
2023
会议名称
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-43894-3
会议录名称
卷号
14221
会议日期
OCT 08-12, 2023
会议地点
null,Vancouver,CANADA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Medical image analysis using deep learning is often challenged by limited labeled data and high annotation costs. Fine-tuning the entire network in label-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from limited labeled data while keeping the pre-trained model unchanged. However, previous work has overlooked the importance of selective labeling in downstream tasks, which aims to select the most valuable downstream samples for annotation to achieve the best performance with minimum annotation cost. To address this, we propose a framework that combines selective labelingwith prompt tuning (SLPT) to boost performance in limited labels. Specifically, we introduce a feature-aware prompt updater to guide prompt tuning and aTandEm Selective LAbeling (TESLA) strategy. TESLA includes unsupervised diversity selection and supervised selection using prompt-based uncertainty. In addition, we propose a diversified visual prompt tuning strategy to provide multi-promptbased discrepant predictions for TESLA. We evaluate our method on liver tumor segmentation and achieve state-of-the-art performance, outperforming traditional fine-tuning with only 6% of tunable parameters, also achieving 94% of full-data performance by labeling only 5% of the data.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key R&D program of China[2019YFB1312400]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001109624900002
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673877
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
2.DAMO Academy, Alibaba Group, Hangzhou, China
3.Hupan Lab, Hangzhou; 310023, China
4.Department of Radiology, Shengjing Hospital of China Medical University, Shenyang; 110004, China
5.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Bai, Fan,Yan, Ke,Bai, Xiaoyu,et al. SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bai, Fan]的文章
[Yan, Ke]的文章
[Bai, Xiaoyu]的文章
百度学术
百度学术中相似的文章
[Bai, Fan]的文章
[Yan, Ke]的文章
[Bai, Xiaoyu]的文章
必应学术
必应学术中相似的文章
[Bai, Fan]的文章
[Yan, Ke]的文章
[Bai, Xiaoyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。