题名 | SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation |
作者 | |
通讯作者 | Meng, Max Q.-H. |
DOI | |
发表日期 | 2023
|
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-43894-3
|
会议录名称 | |
卷号 | 14221
|
会议日期 | OCT 08-12, 2023
|
会议地点 | null,Vancouver,CANADA
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Medical image analysis using deep learning is often challenged by limited labeled data and high annotation costs. Fine-tuning the entire network in label-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from limited labeled data while keeping the pre-trained model unchanged. However, previous work has overlooked the importance of selective labeling in downstream tasks, which aims to select the most valuable downstream samples for annotation to achieve the best performance with minimum annotation cost. To address this, we propose a framework that combines selective labelingwith prompt tuning (SLPT) to boost performance in limited labels. Specifically, we introduce a feature-aware prompt updater to guide prompt tuning and aTandEm Selective LAbeling (TESLA) strategy. TESLA includes unsupervised diversity selection and supervised selection using prompt-based uncertainty. In addition, we propose a diversified visual prompt tuning strategy to provide multi-promptbased discrepant predictions for TESLA. We evaluate our method on liver tumor segmentation and achieve state-of-the-art performance, outperforming traditional fine-tuning with only 6% of tunable parameters, also achieving 94% of full-data performance by labeling only 5% of the data. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Key R&D program of China[2019YFB1312400]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:001109624900002
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673877 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 2.DAMO Academy, Alibaba Group, Hangzhou, China 3.Hupan Lab, Hangzhou; 310023, China 4.Department of Radiology, Shengjing Hospital of China Medical University, Shenyang; 110004, China 5.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China |
通讯作者单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Bai, Fan,Yan, Ke,Bai, Xiaoyu,et al. SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论