题名 | Polar Eyeball Shape Net for 3D Posterior Ocular Shape Representation |
作者 | |
通讯作者 | Hu, Yan |
DOI | |
发表日期 | 2023
|
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-43986-5
|
会议录名称 | |
卷号 | 14225
|
会议日期 | OCT 08-12, 2023
|
会议地点 | null,Vancouver,CANADA
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | The shape of the posterior eyeball is a crucial factor in many clinical applications, such as myopia prevention, surgical planning, and disease screening. However, current shape representations are limited by their low resolution or small field of view, providing insufficient information for surgeons to make accurate decisions. This paper proposes a novel task of reconstructing complete 3D posterior shapes based on small-FOV OCT images and introduces a novel Posterior Eyeball Shape Network (PESNet) to accomplish this task. The proposed PESNet is designed with dual branches that incorporate anatomical information of the eyeball as guidance. To capture more detailed information, we introduce a Polar Voxelization Block (PVB) that transfers sparse input point clouds to a dense representation. Furthermore, we propose a Radius-wise Fusion Block (RFB) that fuses correlative hierarchical features from the two branches. Our qualitative results indicate that PESNet provides a well-represented complete posterior eyeball shape with a chamfer distance of 9.52, SSIM of 0.78, and Density of 0.013 on the self-made posterior ocular shape dataset. We also demonstrate the effectiveness of our model by testing it on patients' data. Overall, our proposed PESNet offers a significant improvement over existing methods in accurately reconstructing the complete 3D posterior eyeball shape. This achievement has important implications for clinical applications. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | General Program of National Natural Science Foundation of China["82272086","82102189"]
; Guangdong Basic and Applied Basic Research Foundation[2021A1515012195]
; Shenzhen Stable Support Plan Program["20220815111736001","20200925174052004"]
; Agency for Science, Technology and Research (A*STAR) Advanced Manufacturing and Engineering (AME) Programmatic Fund[A20H4b0141]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:001109635100018
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673883 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.The University of Hong Kong, Pokfulam, Hong Kong 2.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 3.Department of Ophthalmology, Shenzhen People’s Hospital, Shenzhen, China 4.Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou, China 5.Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Jiaqi,Hu, Yan,Qi, Xiaojuan,et al. Polar Eyeball Shape Net for 3D Posterior Ocular Shape Representation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论