中文版 | English
题名

Polar Eyeball Shape Net for 3D Posterior Ocular Shape Representation

作者
通讯作者Hu, Yan
DOI
发表日期
2023
会议名称
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-43986-5
会议录名称
卷号
14225
会议日期
OCT 08-12, 2023
会议地点
null,Vancouver,CANADA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
The shape of the posterior eyeball is a crucial factor in many clinical applications, such as myopia prevention, surgical planning, and disease screening. However, current shape representations are limited by their low resolution or small field of view, providing insufficient information for surgeons to make accurate decisions. This paper proposes a novel task of reconstructing complete 3D posterior shapes based on small-FOV OCT images and introduces a novel Posterior Eyeball Shape Network (PESNet) to accomplish this task. The proposed PESNet is designed with dual branches that incorporate anatomical information of the eyeball as guidance. To capture more detailed information, we introduce a Polar Voxelization Block (PVB) that transfers sparse input point clouds to a dense representation. Furthermore, we propose a Radius-wise Fusion Block (RFB) that fuses correlative hierarchical features from the two branches. Our qualitative results indicate that PESNet provides a well-represented complete posterior eyeball shape with a chamfer distance of 9.52, SSIM of 0.78, and Density of 0.013 on the self-made posterior ocular shape dataset. We also demonstrate the effectiveness of our model by testing it on patients' data. Overall, our proposed PESNet offers a significant improvement over existing methods in accurately reconstructing the complete 3D posterior eyeball shape. This achievement has important implications for clinical applications.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
General Program of National Natural Science Foundation of China["82272086","82102189"] ; Guangdong Basic and Applied Basic Research Foundation[2021A1515012195] ; Shenzhen Stable Support Plan Program["20220815111736001","20200925174052004"] ; Agency for Science, Technology and Research (A*STAR) Advanced Manufacturing and Engineering (AME) Programmatic Fund[A20H4b0141]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001109635100018
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673883
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.The University of Hong Kong, Pokfulam, Hong Kong
2.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.Department of Ophthalmology, Shenzhen People’s Hospital, Shenzhen, China
4.Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou, China
5.Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Jiaqi,Hu, Yan,Qi, Xiaojuan,et al. Polar Eyeball Shape Net for 3D Posterior Ocular Shape Representation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiaqi]的文章
[Hu, Yan]的文章
[Qi, Xiaojuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiaqi]的文章
[Hu, Yan]的文章
[Qi, Xiaojuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiaqi]的文章
[Hu, Yan]的文章
[Qi, Xiaojuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。