中文版 | English
题名

基于面波相速度频散曲线的三维速度结构波动方程反演

其他题名
3D VELOCITY STRUCTURE WAVE EQUATION INVERSION BASED ON SURFACE WAVE PHASE VELOCITY DISPERSION CURVES
姓名
姓名拼音
WANG Wu
学号
11849526
学位类型
博士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
张伟
导师单位
地球与空间科学系
论文答辩日期
2023-11-02
论文提交日期
2024-01-11
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

  利用地震面波的频散特性进行反演成像是获取地球内部结构的主要手段之一。传统基于一维速度结构正演的地震面波层析成像方法只能获得近似的三维速度模型,而基于波动方程模拟的三维地震面波波动方程反演方法具备反演任意复杂三维结构的潜力,却面临两个难题:(1)需要存储每个台站的四维应变格林函数,存储量过大;(2)当前的面波波动方程反演方法只使用了面波群走时的信息,但面波的相走时相比于群走时具有更深的敏感核分布,可以更好地约束深部结构。如何利用面波相走时进行波动方程反演仍待研究。

  针对三维地震波动方程反演数据存储量过大的问题,本研究提出了一种基于多维数据压缩的波动方程反演方法,该方法基于Tucker张量分解可以在相同压缩精度下获得很高的压缩比,显著减小了四维应变格林张量的数据大小,提高了波动方程反演的计算效率。本文研究了应变张量压缩误差对波动方程反演敏感核的影响,并定量地研究了波动方程反演应用中所能允许的相对压缩误差控制参数。实际数据波动方程反演算例表明,在获得大约1 000倍的压缩比时,压缩误差不会影响反演结果。

  本研究对如何利用面波相走时进行波动方程反演进行了研究。首先,提出了一种计算面波相走时波动方程反演Fréchet敏感核的原理和方法。通过采用Kaiser滤波器对面波波形进行极窄带滤波,可以准确计算从多分量地震波形中提取的面波相走时波动方程反演Fréchet敏感核,其中包括Z分量上的基阶Rayleigh面波、T分量上的Love面波,以及从Z分量和R分量中分离出的一阶Rayleigh面波。这些三维Fréchet敏感核的准确计算为波动方程反演高分辨率速度模型奠定了基础。其次,提出了一种基于面波相速度频散曲线波动方程反演方法。通过利用面波相速度频散曲线,可以准确计算相走时差,有效地避免了周波跳跃问题,并且实现了直接使用面波相速度频散曲线进行三维速度结构波动方程反演。通过数值算例验证了该方法的可行性,结果显示,与传统面波走时层析成像和群走时波动方程反演相比,该方法获得的反演结果具有更高的分辨率,并且能够分辨更深的速度结构。此外,该方法还成功应用于龙门山地区的实际地震数据,获得的反演结果与前人研究结果总体一致,验证了该方法在反演实际地震数据方面的可行性。通过波动方程反演获得的高分辨率反演结果,为研究该地区地质构造、汶川大地震的孕震机制和动力学背景提供了重要的参考依据。

  本研究为快速高效地反演高精度地下速度模型提供了基础。所得速度模型在研究地球内部结构、地球演化过程、地震与火山成因等方面具有重要的实际意义。

其他摘要

    Using the dispersion characteristics of seismic surface waves for internal structure imaging is one of the primary means of obtaining information about the Earth's interior. Traditional seismic surface wave tomography methods, based on one-dimensional velocity structures, can only yield approximate three-dimensional velocity models. In contrast, the three-dimensional seismic surface wave equation inversion method based on wave equation simulation holds the potential to invert for any complex three-dimensional structure. However, it faces two challenges: (1) the need to store the four-dimensional strain Green's functions for each station, resulting in significant storage requirements; (2) the current surface wave equation inversion method only utilizes information from the group travel times, while the phase travel times of surface waves, compared to the group travel times, have a deeper sensitivity kernel distribution that could better constrain deeper structures. The exploration of how to effectively utilize phase travel times of surface waves in waveform inversion based on the seismic wave equation remains to be studied.

    To address the issue of excessive data storage in three-dimensional seismic wave equation inversionthis study introduces a wave equation inversion method based on multidimensional data compression. The method, based on Tucker tensor decomposition, achieves high compression ratios under the same compression accuracy, significantly reducing the data size of four-dimensional strain Green tensors and effectively addressing the pain points of wave equation inversion based on scattering integral methods, thus improving the computational efficiency of wave equation inversion. This study investigates the influence of strain tensor compression errors on wave equation inversion sensitivity kernels and quantitatively studies the allowable relative compression error control parameters in wave equation inversion applications. Numerical examples of actual data wave equation inversion demonstrate that compression errors do not affect the inversion results when achieving a compression ratio of approximately 1 000 times.

    This study investigates the utilization of phase travel times of surface waves in waveform inversion. Firstly, a principle and method for computing the wave equation inversion Fréchet sensitivity kernel using phase travel times of surface waves are proposed. By applying Kaiser filtering to the surface waveforms for ultra-narrowband filtering, accurate computation of the wave equation inversion Fréchet sensitivity kernel can be achieved. This includes the fundamental Rayleigh surface wave on the Z component, Love surface wave on the T component, and the first-order Rayleigh surface wave separated from the Z and R components. The accurate computation of these three-dimensional Fréchet sensitivity kernels forms the foundation for high-resolution velocity model inversion in wave equation inversion. Secondly, a method based on the phase velocity dispersion curve of surface waves for wave equation inversion is introduced. By utilizing the phase velocity dispersion curve of surface waves, accurate computation of phase travel time differences is achieved, effectively avoiding frequency jump issues. This method allows for direct three-dimensional velocity structure inversion using the phase velocity dispersion curve of surface waves. Feasibility of the proposed method is validated through numerical examples, demonstrating that compared to traditional surface wave travel time tomography and group travel time wave equation inversion, the proposed method yields higher resolution inversion results capable of distinguishing deeper velocity structures. Furthermore, the method is successfully applied to actual seismic data from the Longmenshan region, producing inversion results consistent with previous studies, thus validating the feasibility of the method in inverting real seismic data. The high-resolution results obtained through wave equation inversion provide important reference points for studying geological structures, the pre-seismic mechanism, and the dynamic background of the Wenchuan earthquake in this region.

    This study establishes the foundation for rapidly and efficiently inverting high-precision subsurface velocity models. The obtained velocity models hold significant practical importance for researching internal Earth structure, Earth evolution processes, and the causes of earthquakes and volcanoes.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-12
参考文献列表

[1] SHAPIRO N M, RITZWOLLER M H. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle[J]. Geophysical Journal International, 2002, 151(1): 88-105.
[2] MEIER U, CURTIS A, TRAMPERT J. Global crustal thickness from neural network inversion of surface wave data[J]. Geophysical Journal International, 2007, 169(2): 706-722.
[3] MEIER U, CURTIS A, TRAMPERT J. Fully nonlinear inversion of fundamental mode surface waves for a global crustal model[J]. Geophysical Research Letters, 2007, 34: L16304.
[4] ZIELHUIS A, NOLET G. Deep seismic expression of an ancient plate boundary in Europe[J]. Science, 1994, 265(5168): 79-81.
[5] CURTIS A, TRAMPERT J, SNIEDER R, et al. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B11): 26919-26947.
[6] SIMONS F J, VAN DER HILST R D, MONTAGNER J P, et al. Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle[J]. Geophysical Journal International, 2002, 151(3): 738-754.
[7] 刘庆华, 鲁来玉, 王凯明. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015, 30(6): 2906-2922.
[8] FOTI S, LAI C, RIX G J, et al. Surface wave methods for near-surface site characterization[M]. CRC Press, 2014.
[9] DAL MORO G. Surface wave analysis for near surface applications[M]. Elsevier, 2014.
[10] NAKATA N, GUALTIERI L, FICHTNER A. Seismic ambient noise[M]. Cambridge University Press, 2019.
[11] 徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8): 2618-2636.
[12] 齐诚, 陈棋福, 陈颙. 利用背景噪声进行地震成像的新方法[J]. 地球物理学进展, 2007, 22(3): 771-777.
[13] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618.
[14] LIN F C, RITZWOLLER M H, TOWNEND J, et al. Ambient noise Rayleigh wave tomography of New Zealand[J]. Geophysical Journal International, 2007, 170(2): 649-666.
[15] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise Rayleigh wave tomography across Europe[J]. Geophysical Journal International, 2007, 168(1): 259-274.
[16] BENSEN G D, RITZWOLLER M H, SHAPIRO N M. Broadband ambient noise surface wave tomography across the United States[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B5): B05306.
[17] BEHR Y, TOWNEND J, BANNISTER S, et al. Shear velocity structure of the Northland Peninsula, New Zealand, inferred from ambient noise correlations[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B5).
[18] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
[19] YAO H, BEGHEIN C, VAN DER HILST R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 2008, 173(1): 205-219.
[20] CARA M, LÉVÊQUE J J. Waveform inversion using secondary observables[J]. Geophysical Research Letters, 1987, 14(10): 1046-1049.
[21] TRAMPERT J, WOODHOUSE J H. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds[J]. Geophysical Journal International, 1995, 122(2): 675-690.
[22] EKSTRÖM G, TROMP J, LARSON E W F. Measurements and global models of surface wave propagation[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 8137-8157.
[23] BARMIN M P, RITZWOLLER M H, LEVSHIN A L. A fast and reliable method for surface wave tomography[J]. Pure and applied Geophysics, 2001, 158: 1351-1375.
[24] RITZWOLLER M H, SHAPIRO N M, BARMIN M P, et al. Global surface wave diffraction tomography[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 1-13.
[25] YOSHIZAWA K, KENNETT B L N. Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02310.
[26] CRUZ-HERNÁNDEZ F, GALLARDO L A, CALÒ M, et al. Laterally constrained surface wave inversion[J]. Geophysical Journal International, 2022, 230(2): 1121-1131.
[27] FANG H, YAO H, ZHANG H, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application[J]. Geophysical Journal International, 2015, 201(3): 1251-1263.
[28] ZHANG X, CURTIS A, GALETTI E, et al. 3-D Monte Carlo surface wave tomography[J]. Geophysical Journal International, 2018, 215(3): 1644-1658.
[29] 胡光辉, 王立歆, 方伍宝. 全波形反演方法及应用[M]. 第1版. 石油工业出版社, 2017.
[30] TROMP J. Seismic wavefield imaging of Earth’s interior across scales[J]. Nature Reviews Earth & Environment, 2020, 1(1): 40-53.
[31] TAPE C, LIU Q, MAGGI A, et al. Adjoint tomography of the southern California crust[J]. Science, 2009, 325(5943): 988-992.
[32] ZHU H, TROMP J. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean[J]. Science, 2013, 341(6148): 871-875.
[33] ZHU H, BOZDAĞ E, PETER D, et al. Structure of the European upper mantle revealed by adjoint tomography[J]. Nature Geoscience, 2012, 5(7): 493-498.
[34] CHEN M, NIU F, LIU Q, et al. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1762-1786.
[35] CHEN M, NIU F, LIU Q, et al. Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography[J]. Geophysical Research Letters, 2015, 42(17): 6967-6974.
[36] CHEN M, NIU F, Tromp J, et al. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature communications, 2017, 8(1): 15659.
[37] ZHANG C, YAO H, LIU Q, et al. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in north China craton[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 368-383.
[38] GAO H, SHEN Y. A preliminary full-wave ambient-noise tomography model spanning from the Juan de Fuca and Gorda spreading centers to the Cascadia volcanic arc[J]. Seismological Research Letters, 2015, 86(5): 1253-1260.
[39] LÜ Z, GAO H, LEI J, et al. Crustal and upper mantle structure of the Tien Shan orogenic belt from full-wave ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3987-4000.
[40] PLESSIX R É, BAETEN G, DE MAAG J W, et al. Full waveform inversion and distance separated simultaneous sweeping: a study with a land seismic data set: full waveform inversion and simultaneous sweeping[J]. Geophysical Prospecting, 2012, 60(4): 733-747.
[41] HU G. Three-dimensional acoustic full waveform inversion : method, algorithms and application to the Valhall petroleum field[D]. Université de Grenoble, 2012.
[42] GAO H, SHEN Y. Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc[J]. Earth and Planetary Science Letters, 2014, 390: 222-233.
[43] CHEN M, HUANG H, YAO H, et al. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 2014, 41(2): 334-340.
[44] LIU Y, NIU F, CHEN M, et al. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography[J]. Earth and Planetary Science Letters, 2017, 461: 20-29.
[45] SAVAGE B, COVELLONE B M, SHEN Y. Wave speed structure of the eastern North American margin[J]. Earth and Planetary Science Letters, 2017, 459: 394-405.
[46] COVELLONE B M, SAVAGE B, SHEN Y. Seismic wave speed structure of the Ontong Java Plateau[J]. Earth and Planetary Science Letters, 2015, 420: 140-150.
[47] LIN F C, MOSCHETTI M P, RITZWOLLER M H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 2008, 173(1): 281-298.
[48] CHEN P, JORDAN T H, LEE E J. Perturbation kernels for generalized seismological data functionals (GSDF)[J]. Geophysical Journal International, 2010, 183(2): 869-883.
[49] GEE L S, JORDAN T H. Generalized seismological data functionals[J]. Geophysical Journal International, 1992, 111(2): 363-390.
[50] LEE E J, CHEN P, JORDAN T H, et al. Full-3-D tomography for crustal structure in Southern California based on the scattering-integral and the adjoint-wavefield methods[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6421-6451.
[51] ZHANG C, LEI T, WANG Y. Two-dimensional full-waveform joint inversion of surface waves using phases and Z/H ratios[J]. Applied Sciences, 2021, 11(15): 6712.
[52] ZHANG Z, SCHUSTER G, LIU Y, et al. Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient[J]. Journal of Applied Geophysics, 2016, 133: 9-15.
[53] LI J, FENG Z, SCHUSTER G. Wave-equation dispersion inversion[J]. Geophysical Journal International, 2017, 208(3): 1567-1578.
[54] LI J, HANAFY S, LIU Z, et al. Wave equation dispersion inversion of Love waves[J]. Geophysics, 2019, 84: 1-45.
[55] LI J, HANAFY S, SCHUSTER G. Wave-equation dispersion inversion of guided P waves in a waveguide of arbitrary geometry[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7760-7774.
[56] LI J, LIN F C, ALLAM A, et al. Wave equation dispersion inversion of surface waves recorded on irregular topography[J]. Geophysical Journal International, 2019, 217(1): 346-360.
[57] ZHANG Z D, ALKHALIFAH T. Wave-equation Rayleigh-wave dispersion inversion using fundamental and higher modes[J]. Geophysics, 2019, 84(4): EN57-EN65.
[58] LIU Z, LI J, HANAFY S M, et al. 3D wave-equation dispersion inversion of Rayleigh waves[J]. Geophysics, 2019, 84(5): 1-127.
[59] CLAPP R G. Reverse time migration: Saving the boundaries[J]. Stanford Exploration Project, 2008, 137: 144.
[60] DUSSAUD E, SYMES W W, WILLIAMSON P, et al. Computational strategies for reverse‐time migration[C]//SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008: 2267-2271.
[61] XIE J, RITZWOLLER M H, SHEN W, et al. Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium[J]. Geophysical Journal International, 2017, 209(1): 466-491.
[62] XIE J, RITZWOLLER M H, SHEN W, et al. Crustal radial anisotropy across eastern Tibet and the western Yangtze craton[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(8): 4226-4252.
[63] MOSCHETTI M P, RITZWOLLER M H, LIN F, et al. Seismic evidence for widespread western-US deep-crustal deformation caused by extension[J]. Nature, 2010, 464(7290): 885-889.
[64] WANG K, LIU Q, YANG Y. Three-dimensional sensitivity kernels for multicomponent empirical Green’s functions from ambient noise: methodology and application to adjoint tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5794-5810.
[65] WANG K, JIANG C, YANG Y, et al. Crustal deformation in southern California constrained by radial anisotropy from ambient noise adjoint tomography[J]. Geophysical Research Letters, 2020, 47(12): e2020GL088580.
[66] ZHANG Y, YAO H, XU M, et al. Radial anisotropy in the crust beneath Fujian and the Taiwan strait from direct surface-wave tomography[J]. Tectonophysics, 2022, 827: 229270.
[67] MALKOTI A, DATTA A, HANASOGE S M. Rayleigh-wave H/V ratio measurement from ambient noise cross-correlations and its sensitivity to VP: a numerical study[J]. Geophysical Journal International, 2021, 227(1): 472-482.
[68] HU S, LUO S, YAO H. The frequency-Bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2020JB019630.
[69] LUO S, HU S, ZHOU G, et al. Improvement of frequency–bessel phase-velocity spectra of multicomponent cross-correlation functions from seismic ambient noise[J]. Bulletin of the Seismological Society of America, 2022, 112(5): 2257-2279.
[70] NAYAK A, THURBER C H. Using multicomponent ambient seismic noise cross-correlations to identify higher mode Rayleigh waves and improve dispersion measurements[J]. Geophysical Journal International, 2020, 222(3): 1590-1605.
[71] JI Z, WANG B, YANG W, et al. Observation of higher-mode surface waves from an active source in the Hutubi basin, Xinjiang, China[J]. Bulletin of the Seismological Society of America, 2021, 111(3): 1181-1198.
[72] AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[73] CLAERBOUT J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264-269.
[74] NOGOSHI M, IGARASHI T. On the propagation characteristics of microtremor[J]. Zisin, 1970, 23(4): 264-280.
[75] WEAVER R, LOBKIS O. On the emergence of the Green’s function in the correlations of a diffuse field: Pulse-echo using thermal phonons[J]. Ultrasonics, 2002, 40(1-8): 435-439.
[76] DERODE A, LAROSE E, TANTER M, et al. Recovering the Green’s function from field-field correlations in an open scattering medium (L)[J]. Journal of the Acoustical Society of America, 2003, 113(6): 2973.
[77] DERODE A, TOURIN A, FINK M. Random multiple scattering of ultrasound. II. Is time reversal a self-averaging process?[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 64(3 Pt 2): 036606.
[78] SNIEDER R. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical Review E, 2004, 69(4): 046610.
[79] ROUX P, SABRA K G, KUPERMAN W A, et al. Ambient noise cross correlation in free space: Theoretical approach[J]. The Journal of the Acoustical Society of America, 2005, 117(1): 79-84.
[80] KEES W, JAN T, DEYAN D. Relations between reflection and transmission responses of three-dimensional inhomogeneous media[J]. Geophysical Journal International, 2004(2): 2.
[81] NISHIDA K, TAKAGI R. Teleseismic S wave microseisms[J]. Science, 2016, 353(6302): 919-921.
[82] POLI P, CAMPILLO M, PEDERSEN H, et al. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise[J]. Science, 2012, 338(6110): 1063-1065.
[83] WANG T, SONG X, XIA H H. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda[J]. Nature Geoscience, 2015, 8(3): 224-227.
[84] LIN F C, LI D, CLAYTON R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 2013, 78(4): Q45-Q56.
[85] SAGER K, TSAI V C, SHENG Y, et al. Modelling P waves in seismic noise correlations: advancing fault monitoring using train traffic sources[J]. Geophysical Journal International, 2022, 228(3): 1556-1567.
[86] ZHENG S, SUN X, SONG X, et al. Surface wave tomography of China from ambient seismic noise correlation[J]. Geochemistry Geophysics Geosystems, 2008, 9(5): Q05020.
[87] CHENG F, XIA J, AJO-FRANKLIN J B, et al. High-resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra-short observation[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2021JB021827.
[88] SHAO J, WANG Y, ZHANG C, et al. Near-surface structure investigation using ambient noise in the water environment recorded by Fiber-Optic distributed acoustic sensing[J]. Remote Sensing, 2023, 15(13): 3329.
[89] TONEGAWA T, ARAKI E, MATSUMOTO H, et al. Extraction of P Wave from ambient seafloor noise observed by distributed acoustic sensing[J]. Geophysical Research Letters, 2022, 49(4): e2022GL098162.
[90] DOU S, LINDSEY N, WAGNER A M, et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study[J]. Scientific Reports, 2017, 7(1): 11620.
[91] LIN C, KU C, CHI T, et al. Correcting the background tilt signal of the horizontal seismometer using a rotation sensor[J]. Seismological Research Letters, 2022, 93(3): 1564-1572.
[92] PAITZ P, SAGER K, FICHTNER A. Rotation and strain ambient noise interferometry[J]. Geophysical Journal International, 2019, 216(3): 1938-1952.
[93] FENG C C, TENG T L. Three-dimensional crust and upper mantle structure of the Eurasian Continent[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B3): 2261-2272.
[94] YU G K, MITCHELL B J. Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion[J]. Geophysical Journal International, 1979, 57(2): 311-341.
[95] 徐果明, 李光品. 用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造[J]. 地球物理学报, 2000, 43(03): 366-376.
[96] PASYANOS M E, MASTERS T G, LASKE G, et al. LITHO1.0: An updated crust and lithospheric model of the Earth[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2153-2173.
[97] MARASCHINI M, ERNST F, FOTI S, et al. A new misfit function for multimodal inversion of surface waves[J]. Geophysics, 2010, 75(4): G31-G43.
[98] NOLET G, PANZA G F. Array analysis of seismic surface waves: limits and possibilities[J]. Pure and Applied geophysics, 1976, 114: 775-790.
[99] HEIJST H J, WOODHOUSE J. Measuring surface-wave overtone phase velocities using a mode-branch stripping technique[J]. Geophysical Journal International, 1997, 131(2): 209-230.
[100] JAN VAN HEIJST H, WOODHOUSE J. Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping[J]. Geophysical Journal International, 1999, 137(3): 601-620.
[101] RITSEMA J, DEUSS A, VAN HEIJST H J, et al. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements: S40RTS[J]. Geophysical Journal International, 2011, 184(3): 1223-1236.
[102] YOSHIZAWA K, KENNETT B L N. Non-linear waveform inversion for surface waves with a neighbourhood algorithm-application to multimode dispersion measurements[J]. Geophysical Journal International, 2002, 149(1): 118-133.
[103] VISSER K, LEBEDEV S, TRAMPERT J, et al. Global Love wave overtone measurements[J]. Geophysical Research Letters, 2007, 34(3): L03302.
[104] ISSE T, KAWAKATSU H, YOSHIZAWA K, et al. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution[J]. Earth and Planetary Science Letters, 2019, 510: 116-130.
[105] ISSE T, YOSHIZAWA K, SHIOBARA H, et al. Three-dimensional shear wave structure beneath the Philippine Sea from land and ocean bottom broadband seismograms[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B6): B06310.
[106] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform[J]. Pure and Applied Geophysics, 2008, 165(5): 903-922.
[107] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave mode separation by high-resolution linear Radon transform[J]. Geophysical Journal International, 2009, 179(1): 254-264.
[108] VISSER K, TRAMPERT J, KENNETT B L N. Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves[J]. Geophysical Journal International, 2008, 172(3): 1016-1032.
[109] XU H, BEGHEIN C. Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach[J]. Geophysical Journal International, 2019, 218(1): 333-353.
[110] YOSHIZAWA K, EKSTRÖM G. Automated multimode phase speed measurements for high-resolution regional-scale tomography: application to North America: Automated multimode phase speed measurements[J]. Geophysical Journal International, 2010, 183(3): 1538-1558.
[111] WANG J, WU G, CHEN X. Frequency-bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723.
[112] WU G, PAN L, WANG J, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213.
[113] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. Journal of Asian Earth Sciences, 2020, 196: 104372.
[114] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020, 63(1): 247-255.
[115] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[116] LI Z, ZHOU J, WU G, et al. CC-FJpy: A Python package for extracting overtone surface-wave dispersion from seismic ambient-noise cross correlation[J]. Seismological Research Letters, 2021, 92(5): 3179-3186.
[117] JONES I F. An introduction to: velocity model building[M]. First Edition. Houten: EAGE Publications, 2010.
[118] DAHLEN F A, HUNG S H, NOLET G. Fréchet kernels for finite-frequency traveltimes—I. Theory[J]. Geophysical Journal International, 2000, 141(1): 157-174.
[119] ZHAO L, JORDAN T H, CHAPMAN C H. Three-dimensional Fréchet differential kernels for seismicdelay times[J]. Geophysical Journal International, 2000, 141(3): 558-576.
[120] YOSHIZAWA K, KENNETT B L N. Sensitivity kernels for finite-frequency surface waves[J]. Geophysical Journal International, 2005, 162(3): 910-926.
[121] ZHOU Y, DAHLEN F A, NOLET G. Three-dimensional sensitivity kernels for surface wave observables[J]. Geophysical Journal International, 2004, 158(1): 142-168.
[122] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[123] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[124] IGEL H. Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method[J]. Geophysical Journal International, 1999, 136(3): 559-566.
[125] BAO H, BIELAK J, GHATTAS O, et al. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1): 85-102.
[126] KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3): 806-822.
[127] KOMATITSCH D, TROMP J. Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation[J]. Geophysical Journal International, 2002, 150(1): 303-318.
[128] TROMP J, TAPE C, LIU Q. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels[J]. Geophysical Journal International, 2005, 160(1): 195-216.
[129] TAPE C, LIU Q, TROMP J. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves[J]. Geophysical Journal International, 2007, 168(3): 1105-1129.
[130] ZHAO L, JORDAN T H, OLSEN K B, et al. Fréchet kernels for imaging regional earth structure based on three-dimensional reference models[J]. Bulletin of the Seismological Society of America, 2005, 95(6): 2066-2080.
[131] ZHAO L, CHEN P, JORDAN T H. Strain Green’s tensors, reciprocity, and their applications to seismic source and structure studies[J]. Bulletin of the Seismological Society of America, 2006, 96(5): 1753-1763.
[132] CHEN P, ZHAO L, JORDAN T H. Full 3D tomography for the crustal structure of the Los Angeles region[J]. Bulletin of the Seismological Society of America, 2007, 97(4): 1094-1120.
[133] CHEN P, JORDAN T H, ZHAO L. Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods[J]. Geophysical Journal International, 2007, 170(1): 175-181.
[134] GERHARD PRATT, SHIN C, HICKS. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophysical Journal International, 1998, 133(2): 341-362.
[135] ZHAO L, JORDAN T H. Structural sensitivities of finite-frequency seismic waves: a full-wave approach[J]. Geophysical Journal International, 2006, 165(3): 981-990.
[136] WANG K, YANG Y, BASINI P, et al. Refined crustal and uppermost mantle structure of southern California by ambient noise adjoint tomography[J]. Geophysical Journal International, 2018, 215(2): 844-863.
[137] RICHARDSON J P, WAITE G P. Waveform inversion of shallow repetitive long period events at Villarrica Volcano, Chile[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 4922-4936.
[138] FAN X, GUO Z, ZHAO Y, et al. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano, China/North Korea, revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 2022, 49(12): e2022GL098308.
[139] ZHAO Y, GUO Z, WANG K, et al. A large magma reservoir beneath the Tengchong volcano revealed by ambient noise adjoint tomography[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2021JB022116.
[140] BO F, HUAZHONG W. Reverse time migration with source wavefield reconstruction strategy[J]. Journal of Geophysics and Engineering, 2012, 9(1): 69-74.
[141] YANG P, GAO J, WANG B. RTM using effective boundary saving: A staggered grid GPU implementation[J]. Computers & Geosciences, 2014, 68: 64-72.
[142] ZHANG Q, ZHOU H, ZUO A, et al. Efficient boundary storage strategy for 3D elastic FWI in time domain[M]//SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014: 1142-1146.
[143] SYMES W W. Reverse time migration with optimal checkpointing[J]. Geophysics, 2007, 72(5): SM213-SM221.
[144] ANDERSON J E, TAN L, WANG D. Time-reversal checkpointing methods for RTM and FWI[J]. Geophysics, 2012, 77(4): S93-S103.
[145] CLAPP R G. Reverse time migration with random boundaries[C]//SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009: 2809-2813.
[146] FLETCHER R P, ROBERTSSON J O A. Time-varying boundary conditions in simulation of seismic wave propagation[J]. Geophysics, 2011, 76(1): A1-A6.
[147] YANG P, BROSSIER R, MÉTIVIER L, et al. Wavefield reconstruction in attenuating media: A checkpointing-assisted reverse-forward simulation method[J]. GEOPHYSICS, 2016, 81(6): R349-R362.
[148] LEE E J, HUANG H, DENNIS J M, et al. An optimized parallel LSQR algorithm for seismic tomography[J]. Computers & Geosciences, 2013, 61: 184-197.
[149] SUN W, FU L Y. Two effective approaches to reduce data storage in reverse time migration[J]. Computers & Geosciences, 2013, 56: 69-75.
[150] HUFFMAN D A. A method for the construction of minimum-redundancy codes[J]. Proceedings of the IRE, 1952, 40(9): 1098-1101.
[151] ZIV J, LEMPEL A. A universal algorithm for sequential data compression[J]. IEEE Transactions on information theory, 1977, 23(3): 337-343.
[152] WELCH T A. A technique for high-performance data compression[J]. Computer, 1984, 17(06): 8-19.
[153] WANG X, TENG Y, GAO M tan, et al. Seismic data compression based on integer wavelet transform[J]. Acta Seismologica Sinica, 2004, 17(S1): 123-128.
[154] BOVIK A C. Handbook of image and video processing[M]. Academic press, 2010.
[155] SAYOOD K. Data Compression[M]//BIDGOLI H. Encyclopedia of Information Systems. New York: Elsevier, 2003: 423-444.
[156] SPANIAS A S, JONSSON S B, STEARNS S D. Transform methods for seismic data compression[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3): 407-416.
[157] WANG Y, WU R S. Seismic data compression by an adaptive local cosine/sine transform and its effects on migration[J]. Geophysical Prospecting, 2000, 48(6): 1009-1031.
[158] DALMAU F R, HANZICH M, DE LA PUENTE J, et al. Lossy data compression with DCT transforms[C]//EAGE Workshop on High Performance Computing for Upstream. European Association of Geoscientists & Engineers, 2014: cp-426.
[159] VILLASENOR J D, ERGAS R A, DONOHO P L. Seismic data compression using high-dimensional wavelet transforms[C]//Proceedings of Data Compression Conference - DCC ’96. 1996: 396-405.
[160] AL-MOOHIMEED M A. Towards an efficient compression algorithm for seismic data[C]//2004 Asia-Pacific Radio Science Conference, 2004. Proceedings. 2004: 550-553.
[161] WU W, YANG Z, QIN Q, et al. Adaptive seismic data compression using wavelet packets[C]//2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, CO, USA: IEEE, 2006: 787-789.
[162] ZHENG F, LIU S. A fast compression algorithm for seismic data from non-cable seismographs[C]//2012 World Congress on Information and Communication Technologies. IEEE, 2012: 1215-1219.
[163] GENG Y, WU R, GAO J. Dreamlet transform applied to seismic data compression and its effects on migration[C]//SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009: 3640-3644.
[164] GENG Y, WU R S, GAO J H. Dreamlet compression of seismic data[J]. Chinese Journal of Geophysics, 2012, 55(08): 2705-2715.
[165] DUVAL L C, NAGAI T. Seismic data compression using GULLOTS[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221): Vol 3. 2001: 1765-1768.
[166] FOMEL S, LIU Y. Seislet transform and seislet frame[J]. Geophysics, 2010, 75(3): V25-V38.
[167] LINDSTROM P, CHEN P, LEE E J. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression[J]. Computers & Geosciences, 2016, 93: 45-54.
[168] 高潇, 张伟, 徐锦承, 等. 应用Squeeze算法实现地震数据高效压缩[J]. 物探化探计算技术, 2020, 42(05): 582-595.
[169] DI S, CAPPELLO F. Fast error-bounded lossy HPC data compression with SZ[C]//2016 IEEE international parallel and distributed processing symposium (ipdps). IEEE, 2016: 730-739.
[170] DI S, CAPPELLO F. Optimization of error-bounded lossy compression for hard-to-compress HPC data[J]. IEEE transactions on parallel and distributed systems, 2017, 29(1): 129-143.
[171] ZHAO K, DI S, DMITRIEV M, et al. Optimizing error-bounded lossy compression for scientific data by dynamic spline interpolation[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE). 2021: 1643-1654.
[172] BOEHM C, HANZICH M, DE LA PUENTE J, et al. Wavefield compression for adjoint methods in full-waveform inversion[J]. Geophysics, 2016, 81(6): R385-R397.
[173] ZAND T, MALCOLM A, GHOLAMI A, et al. Compressed imaging to reduce storage in adjoint-state calculations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9236-9241.
[174] HELAL E B, SAAD O M, HAFEZ A G, et al. Seismic data compression using deep learning[J]. IEEE Access, 2021, 9: 58161-58169.
[175] LIU B, MOHANDES M, NUHA H, et al. A multitone model-based seismic data compression[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021: 1-11.
[176] DA SILVA C, ZHANG Y, KUMAR R, et al. Applications of low-rank compressed seismic data to full-waveform inversion and extended image volumes[J]. Geophysics, 2019, 84(3): R371-R383.
[177] STEIN S, WYSESSION M. An introduction to seismology, earthquakes, and earth structure[M]. John Wiley & Sons, 2009.
[178] PEDERSEN H A. Impacts of non-plane waves on two-station measurements of phase velocities[J]. Geophysical Journal International, 2006, 165(1): 279-287.
[179] FOSTER A, EKSTRÖM G, NETTLES M. Surface wave phase velocities of the Western United States from a two-station method[J]. Geophysical Journal International, 2014, 196(2): 1189-1206.
[180] HAMADA K, YOSHIZAWA K. Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray[J]. Geophysical Journal International, 2015, 202(3): 1463-1482.
[181] PEDERSEN H A, BOUÉ P, POLI P, et al. Arrival angle anomalies of Rayleigh waves observed at a broadband array: a systematic study based on earthquake data, full waveform simulations and noise correlations[J]. Geophysical Journal International, 2015, 203(3): 1626-1641.
[182] HERRMANN R B. Some aspects of band-pass filtering of surface waves[J]. Bulletin of the Seismological Society of America, 1973, 63(2): 663-671.
[183] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1260.
[184] SADEGHISORKHANI H, GUDMUNDSSON Ó, TRYGGVASON A. GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations[J]. Computers & Geosciences, 2018, 110: 41-53.
[185] SADEGHISORKHANI H, GUDMUNDSSON Ó, ROBERTS R, et al. Velocity-measurement bias of the ambient noise method due to source directivity: a case study for the Swedish National Seismic Network[J]. Geophysical Journal International, 2017, 209(3): 1648-1659.
[186] SADEGHISORKHANI H, GUDMUNDSSON Ó, ROBERTS R, et al. Mapping the source distribution of microseisms using noise covariogram envelopes[J]. Geophysical Journal International, 2016, 205(3): 1473-1491.
[187] 姚华建, 徐果明, 肖翔, 等. 基于图像分析的双台面波相速度频散曲线快速提取方法[J]. 地震地磁观测与研究, 2004(01): 1-8.
[188] YANG S, ZHANG H, GU N, et al. Automatically extracting surface‐wave group and phase velocity dispersion curves from dispersion spectrograms using a convolutional neural network[J]. Seismological Research Letters, 2022, 93(3): 1549-1563.
[189] LEVSHIN A, RATNIKOVA L, BERGER J. Peculiarities of surface-wave propagation across central Eurasia[J]. Bulletin of the Seismological Society of America, 1992, 82(6): 2464-2493.
[190] RAWLINSON N, SAMBRIDGE M. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophysical Journal International, 2004, 156(3): 631-647.
[191] HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17-34.
[192] THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21: 89-93.
[193] KAUSEL E, ROËSSET J M. Stiffness matrices for layered soils[J]. Bulletin of the Seismological Society of America, 1981, 71(6): 1743-1761.
[194] SCHWAB F, KNOPOFF L. Surface-wave dispersion computations[J]. Bulletin of the Seismological Society of America, 1970, 60(2): 321-344.
[195] WATSON T H. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 161-166.
[196] ABO-ZENA A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1): 91-105.
[197] KENNETT B L N. Reflections, rays, and reverberations[J]. Bulletin of the Seismological Society of America, 1974, 64(6): 1685-1696.
[198] KENNETT B L N, KERRY N J. Seismic waves in a stratified half space[J]. Geophysical Journal International, 1979, 57(3): 557-583.
[199] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2): 391-409.
[200] MASTERS G, WOODHOUSE J H, FREEMAN G. Mineos v1.0.2 [software][CP]. Computational Infrastructure for Geodynamics, 2011.
[201] HERRMANN R B. Computer programs in seismology: an evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6): 1081-1088.
[202] GILBERT F, BACKUS G E. Propagator matrices in elastic wave and vibration problems[J]. Studia Geophysica et Geodaetica, 1966, 10(3): 271-271.
[203] FUCHS K, MULLER G. Computation of synthetic seismograms with the reflectivity method and comparison with observations[J]. Geophysical Journal International, 1971, 23(4): 417-433.
[204] BOUCHON M, AKI K. Discrete wave-number representation of seismic-source wave fields[J]. Bulletin of the Seismological Society of America, 1977, 67(2): 259-277.
[205] ČERVENỲ V, KLIMEŠ L, PŠENČÍK I. Paraxial ray approximations in the computation of seismic wavefields in inhomogeneous media[J]. Geophysical Journal International, 1984, 79(1): 89-104.
[206] ČERVENÝ V, POPOV M M, PŠENČÍK I. Computation of wave fields in inhomogeneous media — Gaussian beam approach[J]. Geophysical Journal International, 1982, 70(1): 109-128.
[207] CHAPMAN C H. Ray theory and its extensions: WKBJ and Maslov seismograms[J]. Journal of Geophysics, 1985, 58(1): 27-43.
[208] TAM C K, WEBB J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of computational physics, 1993, 107(2): 262-281.
[209] HIXON R. On increasing the accuracy of MacCormack schemes for aeroacoustic applications[C]//3rd AIAA/CEAS Aeroacoustics Conference. 1997: 1586.
[210] ZHANG W, SHEN Y. Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling[J]. Geophysics, 2010, 75(4): T141-T154.
[211] LUO J, WU R S. Seismic envelope inversion: reduction of local minima and noise resistance[J]. Geophysical Prospecting, 2015, 63(3): 597-614.
[212] GROOS L, SCHÄFER M, FORBRIGER T, et al. Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves workflow for FWI of Rayleigh waves[J]. Geophysics, 2017, 82(2): R109-R117.
[213] TAPE C H. Seismic tomography of southern California using adjoint methods[D]. California Institute of Technology, 2009.
[214] YUAN Y O, BOZDAĞ E, CIARDELLI C, et al. The exponentiated phase measurement, and objective-function hybridization for adjoint waveform tomography[J]. Geophysical Journal International, 2020, 221(2): 1145-1164.
[215] PÉREZ SOLANO C A, DONNO D, CHAURIS H. Alternative waveform inversion for surface wave analysis in 2-D media[J]. Geophysical Journal International, 2014, 198(3): 1359-1372.
[216] FICHTNER A, KENNETT B L N, IGEL H, et al. Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain[J]. Geophysical Journal International, 2008, 175(2): 665-685.
[217] CHOI Y, ALKHALIFAH T. Frequency-domain waveform inversion using the unwrapped phase[C]//SEG International Exposition and Annual Meeting. SEG, 2011: SEG-2011-2576.
[218] DJEBBI R, ALKHALIFAH T. Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase[J]. Geophysical Journal International, 2014, 197(2): 975-986.
[219] YUAN Y O, SIMONS F J, TROMP J. Double-difference adjoint seismic tomography[J]. Geophysical Journal International, 2016, 206(3): 1599-1618.
[220] TOHTI M, LIU J, XIAO W, et al. Full‐waveform inversion of surface waves based on instantaneous‐phase coherency[J]. Near Surface Geophysics, 2022, 20(5): 494-506.
[221] SCHIMMEL M, STUTZMANN E, GALLART J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale: Ambient noise signal extraction[J]. Geophysical Journal International, 2011, 184(1): 494-506.
[222] YUAN Y O, BOZDAĞ E, CIARDELLI C, et al. The exponentiated phase measurement, and objective-function hybridization for adjoint waveform tomography[J]. Geophysical Journal International, 2020, 221(2): 1145-1164.
[223] FICHTNER A, TRAMPERT J, CUPILLARD P, et al. Multiscale full waveform inversion[J]. Geophysical Journal International, 2013, 194(1): 534-556.
[224] AKI K, RICHARDS P G. Quantitative seismology[M]. University Science Books, 2002.
[225] NOLET G. Seismic wave propagation and seismic tomography[M]//NOLET G. Seismic tomography: with applications in global seismology and exploration geophysics. Dordrecht: Springer Netherlands, 1987: 1-23.
[226] KARAMI A, YAZDI M, MERCIER G. Compression of hyperspectral images using discerete wavelet transform and tucker decomposition[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2012, 5(2): 444-450.
[227] HATCH D R, DEL-CASTILLO-NEGRETE D, TERRY P W. Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition[J]. Journal of Computational Physics, 2012, 231(11): 4234-4256.
[228] AFRA S, GILDIN E, TARRAHI M. Heterogeneous reservoir characterization using efficient parameterization through higher order SVD (HOSVD)[C]//2014 American Control Conference. 2014: 147-152.
[229] GARCÍA-MAGARIÑO A, SOR S, VELAZQUEZ A. Data reduction method for droplet deformation experiments based on High Order Singular Value Decomposition[J]. Experimental Thermal and Fluid Science, 2016, 79: 13-24.
[230] AUSTIN W, BALLARD G, KOLDA T G. Parallel tensor compression for large-scale scientific data[C]//2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2016: 912-922.
[231] BALLARD G, KLINVEX A, KOLDA T G. TuckerMPI: A parallel C++/MPI software package for large-scale data compression via the tucker tensor decomposition[J]. ACM Transactions on Mathematical Software (TOMS), 2020, 46(2): 1-31.
[232] KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500.
[233] VANNIEUWENHOVEN N, VANDEBRIL R, MEERBERGEN K. A new truncation strategy for the higher-order singular value decomposition[J]. SIAM Journal on Scientific Computing, 2012, 34(2): A1027-A1052.
[234] VERSTEEG R. The Marmousi experience: velocity model determination on a synthetic complex data set[J]. The Leading Edge, 1994, 13(9): 927-936.
[235] LINDSTROM P. Fixed-rate compressed floating-point arrays[J]. IEEE transactions on visualization and computer graphics, 2014, 20(12): 2674-2683.
[236] LIANG X, DI S, TAO D, et al. Error-controlled lossy compression optimized for high compression ratios of scientific datasets[C]//2018 IEEE International Conference on Big Data (Big Data). Seattle, WA, USA: IEEE, 2018: 438-447.
[237] ZHANG J, ZHUO X, MOON A, et al. Efficient encoding and reconstruction of HPC datasets for checkpoint/restart[C]//2019 35th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 2019: 79-91.
[238] BALLESTER-RIPOLL R, PAJAROLA R. Lossy volume compression using Tucker truncation and thresholding[J]. The Visual Computer, 2016, 32(11): 1433-1446.
[239] BALLESTER-RIPOLL R, LINDSTROM P, PAJAROLA R. TTHRESH: tensor compression for multidimensional visual data[J]. IEEE transactions on visualization and computer graphics, 2019, 26(9): 2891-2903.
[240] LIU Y, YAO H, ZHANG H, et al. The community velocity model v.1.0 of southwest china, constructed from joint body- and surface-wave travel-time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987.
[241] YANG Y, LANGSTON C A, POWELL C A, et al. Full waveform ambient noise tomography for the northern mississippi embayment[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB022267.
[242] CHEN P, LEE E J. Full-3D seismic waveform inversion: Theory, software and practice[M]. Springer, 2015.
[243] MOONEY H M, BOLT B A. Dispersive characteristics of the first three Rayleigh modes for a single surface layer[J]. Bulletin of the Seismological Society of America, 1966, 56(1): 43-67.
[244] MALISCHEWSKY P G, SCHERBAUM F, LOMNITZ C, et al. The domain of existence of prograde Rayleigh-wave particle motion for simple models[J]. Wave Motion, 2008, 45(4): 556-564.
[245] JONES G H S, MAUKEAU G T, CYGANIK S A. Air-blast coupling to prograde and retrograde surface waves[J]. Journal of Geophysical Research (1896-1977), 1963, 68(17): 4979-4987.
[246] GRIBLER G, LIBERTY L M, MIKESELL T D, et al. Isolating retrograde and prograde Rayleigh-wave modes using a polarity mute[J]. Geophysics, 2016, 81(5): V379-V385.
[247] GRIBLER G, MIKESELL T D. Methods to isolate retrograde and prograde Rayleigh-wave signals[J]. Geophysical Journal International, 2019, 219(2): 975-994.
[248] ZHANG Z, YAO H. Sichuan Basin dipsersion data & velocity model[DS/OL]. Zenodo, 2021
[2023-08-21]. https://zenodo.org/record/5520155.
[249] ZHANG A, GUO Z, DAI H, et al. Thermochemical structure and melting distribution of the upper mantle beneath intraplate volcanic areas in eastern South China Block[DS/OL]. Zenodo, 2022
[2022-12-29]. https://zenodo.org/record/7491753.
[250] TURUNCTUR B, EKEN T, CHEN Y, et al. Dataset and 3D Vs model for “Crustal velocity images of north-western Türkiye along theNorth Anatolian Fault Zone from transdimensional Bayesian ambient seismic noise tomography”[DS/OL]. Zenodo, 2023
[2023-08-21]. https://zenodo.org/record/7645203.
[251] QIAN H, MECHIE J. Temporary seismological network in Longmenshan[DS/.mseed,XML]. GFZ Data Services, 2012: 392 GB. http://geofon.gfz-potsdam.de/waveform/archive/network.php?ncode=2F&year=2012.
[252] QIAN H, MECHIE J, LI H, et al. An approach to jointly invert hypocenters and 1D velocity structure and its application to the Lushan earthquake series[J]. Journal of Seismology, 2016, 20(1): 213-232.
[253] QIAN H, MECHIE J, LI H, et al. Structure of the crust and mantle down to 700 km depth beneath the Longmenshan from P receiver functions[J]. Tectonics, 2018, 37(6): 1688-1708.
[254] QIAN H, YU C, MECHIE J, et al. Dense seismological array and profile across the Longmenshan and the deep extension of the Pengguan complex[J]. Tectonophysics, 2022, 823: 229193.
[255] FENG M, QIAN H, MECHIE J, et al. Crustal seismogenic structures and deformation styles along the Longmen Shan Fault belt in the eastern Tibetan Plateau inferred from ambient noise tomography[J]. Tectonophysics, 2021, 798: 228689.
[256] 许志琴, 吴忠良, 李海兵, 等. 世界上最快回应大地震的汶川地震断裂带科学钻探[J]. 地球物理学报, 2018, 61(5): 1666-1679.
[257] 雷建设, 赵大鹏, 苏金蓉, 等. 龙门山断裂带地壳精细结构与汶川地震发震机理[J]. 地球物理学报, 2009, 52(2): 339-345.
[258] 邓文泽, 陈九辉, 郭飚, 等. 龙门山断裂带精细速度结构的双差层析成像研究[J]. 地球物理学报, 2014, 57(4): 1101-1110.
[259] ZHANG Z, WANG Y, CHEN Y, et al. Crustal structure across Longmenshan fault belt from passive source seismic profiling[J]. Geophysical Research Letters, 2009, 36: L17310.
[260] 王绪本, 朱迎堂, 赵锡奎, 等. 青藏高原东缘龙门山逆冲构造深部电性结构特征[J]. 地球物理学报, 2009, 52(2): 564-571.
[261] WANG C Y, ZHU L, LOU H, et al. Crustal thicknesses and Poisson’s ratios in the eastern Tibetan Plateau and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11): B11301.
[262] LIU Q Y, VAN DER HILST R D, LI Y, et al. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 2014, 7(5): 361-365.
[263] PAVLIS G L, VERNON F L. Array processing of teleseismic body waves with the USArray[J]. Computers & Geosciences, 2010, 36(7): 910-920.
[264] YANG X, BRYAN J, OKUBO K, et al. Optimal stacking of noise cross-correlation functions[J]. Geophysical Journal International, 2023, 232(3): 1600-1618.
[265] TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864.
[266] WU R S, LUO J, WU B. Seismic envelope inversion and modulation signal model[J]. Geophysics, 2014, 79(3): WA13-WA24.
[267] BOZDAĞ E, TRAMPERT J, TROMP J. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements: Misfit functions for full waveform inversion[J]. Geophysical Journal International, 2011, 185(2): 845-870.

所在学位评定分委会
力学
国内图书分类号
P315.02
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673930
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
王武. 基于面波相速度频散曲线的三维速度结构波动方程反演[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849526-王武-地球与空间科学系(60650KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王武]的文章
百度学术
百度学术中相似的文章
[王武]的文章
必应学术
必应学术中相似的文章
[王武]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。