[1] SHAPIRO N M, RITZWOLLER M H. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle[J]. Geophysical Journal International, 2002, 151(1): 88-105.
[2] MEIER U, CURTIS A, TRAMPERT J. Global crustal thickness from neural network inversion of surface wave data[J]. Geophysical Journal International, 2007, 169(2): 706-722.
[3] MEIER U, CURTIS A, TRAMPERT J. Fully nonlinear inversion of fundamental mode surface waves for a global crustal model[J]. Geophysical Research Letters, 2007, 34: L16304.
[4] ZIELHUIS A, NOLET G. Deep seismic expression of an ancient plate boundary in Europe[J]. Science, 1994, 265(5168): 79-81.
[5] CURTIS A, TRAMPERT J, SNIEDER R, et al. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B11): 26919-26947.
[6] SIMONS F J, VAN DER HILST R D, MONTAGNER J P, et al. Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle[J]. Geophysical Journal International, 2002, 151(3): 738-754.
[7] 刘庆华, 鲁来玉, 王凯明. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015, 30(6): 2906-2922.
[8] FOTI S, LAI C, RIX G J, et al. Surface wave methods for near-surface site characterization[M]. CRC Press, 2014.
[9] DAL MORO G. Surface wave analysis for near surface applications[M]. Elsevier, 2014.
[10] NAKATA N, GUALTIERI L, FICHTNER A. Seismic ambient noise[M]. Cambridge University Press, 2019.
[11] 徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8): 2618-2636.
[12] 齐诚, 陈棋福, 陈颙. 利用背景噪声进行地震成像的新方法[J]. 地球物理学进展, 2007, 22(3): 771-777.
[13] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618.
[14] LIN F C, RITZWOLLER M H, TOWNEND J, et al. Ambient noise Rayleigh wave tomography of New Zealand[J]. Geophysical Journal International, 2007, 170(2): 649-666.
[15] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise Rayleigh wave tomography across Europe[J]. Geophysical Journal International, 2007, 168(1): 259-274.
[16] BENSEN G D, RITZWOLLER M H, SHAPIRO N M. Broadband ambient noise surface wave tomography across the United States[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B5): B05306.
[17] BEHR Y, TOWNEND J, BANNISTER S, et al. Shear velocity structure of the Northland Peninsula, New Zealand, inferred from ambient noise correlations[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B5).
[18] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
[19] YAO H, BEGHEIN C, VAN DER HILST R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 2008, 173(1): 205-219.
[20] CARA M, LÉVÊQUE J J. Waveform inversion using secondary observables[J]. Geophysical Research Letters, 1987, 14(10): 1046-1049.
[21] TRAMPERT J, WOODHOUSE J H. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds[J]. Geophysical Journal International, 1995, 122(2): 675-690.
[22] EKSTRÖM G, TROMP J, LARSON E W F. Measurements and global models of surface wave propagation[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 8137-8157.
[23] BARMIN M P, RITZWOLLER M H, LEVSHIN A L. A fast and reliable method for surface wave tomography[J]. Pure and applied Geophysics, 2001, 158: 1351-1375.
[24] RITZWOLLER M H, SHAPIRO N M, BARMIN M P, et al. Global surface wave diffraction tomography[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 1-13.
[25] YOSHIZAWA K, KENNETT B L N. Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02310.
[26] CRUZ-HERNÁNDEZ F, GALLARDO L A, CALÒ M, et al. Laterally constrained surface wave inversion[J]. Geophysical Journal International, 2022, 230(2): 1121-1131.
[27] FANG H, YAO H, ZHANG H, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application[J]. Geophysical Journal International, 2015, 201(3): 1251-1263.
[28] ZHANG X, CURTIS A, GALETTI E, et al. 3-D Monte Carlo surface wave tomography[J]. Geophysical Journal International, 2018, 215(3): 1644-1658.
[29] 胡光辉, 王立歆, 方伍宝. 全波形反演方法及应用[M]. 第1版. 石油工业出版社, 2017.
[30] TROMP J. Seismic wavefield imaging of Earth’s interior across scales[J]. Nature Reviews Earth & Environment, 2020, 1(1): 40-53.
[31] TAPE C, LIU Q, MAGGI A, et al. Adjoint tomography of the southern California crust[J]. Science, 2009, 325(5943): 988-992.
[32] ZHU H, TROMP J. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean[J]. Science, 2013, 341(6148): 871-875.
[33] ZHU H, BOZDAĞ E, PETER D, et al. Structure of the European upper mantle revealed by adjoint tomography[J]. Nature Geoscience, 2012, 5(7): 493-498.
[34] CHEN M, NIU F, LIU Q, et al. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1762-1786.
[35] CHEN M, NIU F, LIU Q, et al. Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography[J]. Geophysical Research Letters, 2015, 42(17): 6967-6974.
[36] CHEN M, NIU F, Tromp J, et al. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nature communications, 2017, 8(1): 15659.
[37] ZHANG C, YAO H, LIU Q, et al. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in north China craton[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 368-383.
[38] GAO H, SHEN Y. A preliminary full-wave ambient-noise tomography model spanning from the Juan de Fuca and Gorda spreading centers to the Cascadia volcanic arc[J]. Seismological Research Letters, 2015, 86(5): 1253-1260.
[39] LÜ Z, GAO H, LEI J, et al. Crustal and upper mantle structure of the Tien Shan orogenic belt from full-wave ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3987-4000.
[40] PLESSIX R É, BAETEN G, DE MAAG J W, et al. Full waveform inversion and distance separated simultaneous sweeping: a study with a land seismic data set: full waveform inversion and simultaneous sweeping[J]. Geophysical Prospecting, 2012, 60(4): 733-747.
[41] HU G. Three-dimensional acoustic full waveform inversion : method, algorithms and application to the Valhall petroleum field[D]. Université de Grenoble, 2012.
[42] GAO H, SHEN Y. Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc[J]. Earth and Planetary Science Letters, 2014, 390: 222-233.
[43] CHEN M, HUANG H, YAO H, et al. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 2014, 41(2): 334-340.
[44] LIU Y, NIU F, CHEN M, et al. 3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography[J]. Earth and Planetary Science Letters, 2017, 461: 20-29.
[45] SAVAGE B, COVELLONE B M, SHEN Y. Wave speed structure of the eastern North American margin[J]. Earth and Planetary Science Letters, 2017, 459: 394-405.
[46] COVELLONE B M, SAVAGE B, SHEN Y. Seismic wave speed structure of the Ontong Java Plateau[J]. Earth and Planetary Science Letters, 2015, 420: 140-150.
[47] LIN F C, MOSCHETTI M P, RITZWOLLER M H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 2008, 173(1): 281-298.
[48] CHEN P, JORDAN T H, LEE E J. Perturbation kernels for generalized seismological data functionals (GSDF)[J]. Geophysical Journal International, 2010, 183(2): 869-883.
[49] GEE L S, JORDAN T H. Generalized seismological data functionals[J]. Geophysical Journal International, 1992, 111(2): 363-390.
[50] LEE E J, CHEN P, JORDAN T H, et al. Full-3-D tomography for crustal structure in Southern California based on the scattering-integral and the adjoint-wavefield methods[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6421-6451.
[51] ZHANG C, LEI T, WANG Y. Two-dimensional full-waveform joint inversion of surface waves using phases and Z/H ratios[J]. Applied Sciences, 2021, 11(15): 6712.
[52] ZHANG Z, SCHUSTER G, LIU Y, et al. Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient[J]. Journal of Applied Geophysics, 2016, 133: 9-15.
[53] LI J, FENG Z, SCHUSTER G. Wave-equation dispersion inversion[J]. Geophysical Journal International, 2017, 208(3): 1567-1578.
[54] LI J, HANAFY S, LIU Z, et al. Wave equation dispersion inversion of Love waves[J]. Geophysics, 2019, 84: 1-45.
[55] LI J, HANAFY S, SCHUSTER G. Wave-equation dispersion inversion of guided P waves in a waveguide of arbitrary geometry[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7760-7774.
[56] LI J, LIN F C, ALLAM A, et al. Wave equation dispersion inversion of surface waves recorded on irregular topography[J]. Geophysical Journal International, 2019, 217(1): 346-360.
[57] ZHANG Z D, ALKHALIFAH T. Wave-equation Rayleigh-wave dispersion inversion using fundamental and higher modes[J]. Geophysics, 2019, 84(4): EN57-EN65.
[58] LIU Z, LI J, HANAFY S M, et al. 3D wave-equation dispersion inversion of Rayleigh waves[J]. Geophysics, 2019, 84(5): 1-127.
[59] CLAPP R G. Reverse time migration: Saving the boundaries[J]. Stanford Exploration Project, 2008, 137: 144.
[60] DUSSAUD E, SYMES W W, WILLIAMSON P, et al. Computational strategies for reverse‐time migration[C]//SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008: 2267-2271.
[61] XIE J, RITZWOLLER M H, SHEN W, et al. Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium[J]. Geophysical Journal International, 2017, 209(1): 466-491.
[62] XIE J, RITZWOLLER M H, SHEN W, et al. Crustal radial anisotropy across eastern Tibet and the western Yangtze craton[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(8): 4226-4252.
[63] MOSCHETTI M P, RITZWOLLER M H, LIN F, et al. Seismic evidence for widespread western-US deep-crustal deformation caused by extension[J]. Nature, 2010, 464(7290): 885-889.
[64] WANG K, LIU Q, YANG Y. Three-dimensional sensitivity kernels for multicomponent empirical Green’s functions from ambient noise: methodology and application to adjoint tomography[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5794-5810.
[65] WANG K, JIANG C, YANG Y, et al. Crustal deformation in southern California constrained by radial anisotropy from ambient noise adjoint tomography[J]. Geophysical Research Letters, 2020, 47(12): e2020GL088580.
[66] ZHANG Y, YAO H, XU M, et al. Radial anisotropy in the crust beneath Fujian and the Taiwan strait from direct surface-wave tomography[J]. Tectonophysics, 2022, 827: 229270.
[67] MALKOTI A, DATTA A, HANASOGE S M. Rayleigh-wave H/V ratio measurement from ambient noise cross-correlations and its sensitivity to VP: a numerical study[J]. Geophysical Journal International, 2021, 227(1): 472-482.
[68] HU S, LUO S, YAO H. The frequency-Bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2020JB019630.
[69] LUO S, HU S, ZHOU G, et al. Improvement of frequency–bessel phase-velocity spectra of multicomponent cross-correlation functions from seismic ambient noise[J]. Bulletin of the Seismological Society of America, 2022, 112(5): 2257-2279.
[70] NAYAK A, THURBER C H. Using multicomponent ambient seismic noise cross-correlations to identify higher mode Rayleigh waves and improve dispersion measurements[J]. Geophysical Journal International, 2020, 222(3): 1590-1605.
[71] JI Z, WANG B, YANG W, et al. Observation of higher-mode surface waves from an active source in the Hutubi basin, Xinjiang, China[J]. Bulletin of the Seismological Society of America, 2021, 111(3): 1181-1198.
[72] AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[73] CLAERBOUT J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264-269.
[74] NOGOSHI M, IGARASHI T. On the propagation characteristics of microtremor[J]. Zisin, 1970, 23(4): 264-280.
[75] WEAVER R, LOBKIS O. On the emergence of the Green’s function in the correlations of a diffuse field: Pulse-echo using thermal phonons[J]. Ultrasonics, 2002, 40(1-8): 435-439.
[76] DERODE A, LAROSE E, TANTER M, et al. Recovering the Green’s function from field-field correlations in an open scattering medium (L)[J]. Journal of the Acoustical Society of America, 2003, 113(6): 2973.
[77] DERODE A, TOURIN A, FINK M. Random multiple scattering of ultrasound. II. Is time reversal a self-averaging process?[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 64(3 Pt 2): 036606.
[78] SNIEDER R. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical Review E, 2004, 69(4): 046610.
[79] ROUX P, SABRA K G, KUPERMAN W A, et al. Ambient noise cross correlation in free space: Theoretical approach[J]. The Journal of the Acoustical Society of America, 2005, 117(1): 79-84.
[80] KEES W, JAN T, DEYAN D. Relations between reflection and transmission responses of three-dimensional inhomogeneous media[J]. Geophysical Journal International, 2004(2): 2.
[81] NISHIDA K, TAKAGI R. Teleseismic S wave microseisms[J]. Science, 2016, 353(6302): 919-921.
[82] POLI P, CAMPILLO M, PEDERSEN H, et al. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise[J]. Science, 2012, 338(6110): 1063-1065.
[83] WANG T, SONG X, XIA H H. Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda[J]. Nature Geoscience, 2015, 8(3): 224-227.
[84] LIN F C, LI D, CLAYTON R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 2013, 78(4): Q45-Q56.
[85] SAGER K, TSAI V C, SHENG Y, et al. Modelling P waves in seismic noise correlations: advancing fault monitoring using train traffic sources[J]. Geophysical Journal International, 2022, 228(3): 1556-1567.
[86] ZHENG S, SUN X, SONG X, et al. Surface wave tomography of China from ambient seismic noise correlation[J]. Geochemistry Geophysics Geosystems, 2008, 9(5): Q05020.
[87] CHENG F, XIA J, AJO-FRANKLIN J B, et al. High-resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra-short observation[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2021JB021827.
[88] SHAO J, WANG Y, ZHANG C, et al. Near-surface structure investigation using ambient noise in the water environment recorded by Fiber-Optic distributed acoustic sensing[J]. Remote Sensing, 2023, 15(13): 3329.
[89] TONEGAWA T, ARAKI E, MATSUMOTO H, et al. Extraction of P Wave from ambient seafloor noise observed by distributed acoustic sensing[J]. Geophysical Research Letters, 2022, 49(4): e2022GL098162.
[90] DOU S, LINDSEY N, WAGNER A M, et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study[J]. Scientific Reports, 2017, 7(1): 11620.
[91] LIN C, KU C, CHI T, et al. Correcting the background tilt signal of the horizontal seismometer using a rotation sensor[J]. Seismological Research Letters, 2022, 93(3): 1564-1572.
[92] PAITZ P, SAGER K, FICHTNER A. Rotation and strain ambient noise interferometry[J]. Geophysical Journal International, 2019, 216(3): 1938-1952.
[93] FENG C C, TENG T L. Three-dimensional crust and upper mantle structure of the Eurasian Continent[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B3): 2261-2272.
[94] YU G K, MITCHELL B J. Regionalized shear velocity models of the Pacific upper mantle from observed Love and Rayleigh wave dispersion[J]. Geophysical Journal International, 1979, 57(2): 311-341.
[95] 徐果明, 李光品. 用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造[J]. 地球物理学报, 2000, 43(03): 366-376.
[96] PASYANOS M E, MASTERS T G, LASKE G, et al. LITHO1.0: An updated crust and lithospheric model of the Earth[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2153-2173.
[97] MARASCHINI M, ERNST F, FOTI S, et al. A new misfit function for multimodal inversion of surface waves[J]. Geophysics, 2010, 75(4): G31-G43.
[98] NOLET G, PANZA G F. Array analysis of seismic surface waves: limits and possibilities[J]. Pure and Applied geophysics, 1976, 114: 775-790.
[99] HEIJST H J, WOODHOUSE J. Measuring surface-wave overtone phase velocities using a mode-branch stripping technique[J]. Geophysical Journal International, 1997, 131(2): 209-230.
[100] JAN VAN HEIJST H, WOODHOUSE J. Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping[J]. Geophysical Journal International, 1999, 137(3): 601-620.
[101] RITSEMA J, DEUSS A, VAN HEIJST H J, et al. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements: S40RTS[J]. Geophysical Journal International, 2011, 184(3): 1223-1236.
[102] YOSHIZAWA K, KENNETT B L N. Non-linear waveform inversion for surface waves with a neighbourhood algorithm-application to multimode dispersion measurements[J]. Geophysical Journal International, 2002, 149(1): 118-133.
[103] VISSER K, LEBEDEV S, TRAMPERT J, et al. Global Love wave overtone measurements[J]. Geophysical Research Letters, 2007, 34(3): L03302.
[104] ISSE T, KAWAKATSU H, YOSHIZAWA K, et al. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution[J]. Earth and Planetary Science Letters, 2019, 510: 116-130.
[105] ISSE T, YOSHIZAWA K, SHIOBARA H, et al. Three-dimensional shear wave structure beneath the Philippine Sea from land and ocean bottom broadband seismograms[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B6): B06310.
[106] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform[J]. Pure and Applied Geophysics, 2008, 165(5): 903-922.
[107] LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave mode separation by high-resolution linear Radon transform[J]. Geophysical Journal International, 2009, 179(1): 254-264.
[108] VISSER K, TRAMPERT J, KENNETT B L N. Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves[J]. Geophysical Journal International, 2008, 172(3): 1016-1032.
[109] XU H, BEGHEIN C. Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach[J]. Geophysical Journal International, 2019, 218(1): 333-353.
[110] YOSHIZAWA K, EKSTRÖM G. Automated multimode phase speed measurements for high-resolution regional-scale tomography: application to North America: Automated multimode phase speed measurements[J]. Geophysical Journal International, 2010, 183(3): 1538-1558.
[111] WANG J, WU G, CHEN X. Frequency-bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723.
[112] WU G, PAN L, WANG J, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213.
[113] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. Journal of Asian Earth Sciences, 2020, 196: 104372.
[114] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报, 2020, 63(1): 247-255.
[115] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[116] LI Z, ZHOU J, WU G, et al. CC-FJpy: A Python package for extracting overtone surface-wave dispersion from seismic ambient-noise cross correlation[J]. Seismological Research Letters, 2021, 92(5): 3179-3186.
[117] JONES I F. An introduction to: velocity model building[M]. First Edition. Houten: EAGE Publications, 2010.
[118] DAHLEN F A, HUNG S H, NOLET G. Fréchet kernels for finite-frequency traveltimes—I. Theory[J]. Geophysical Journal International, 2000, 141(1): 157-174.
[119] ZHAO L, JORDAN T H, CHAPMAN C H. Three-dimensional Fréchet differential kernels for seismicdelay times[J]. Geophysical Journal International, 2000, 141(3): 558-576.
[120] YOSHIZAWA K, KENNETT B L N. Sensitivity kernels for finite-frequency surface waves[J]. Geophysical Journal International, 2005, 162(3): 910-926.
[121] ZHOU Y, DAHLEN F A, NOLET G. Three-dimensional sensitivity kernels for surface wave observables[J]. Geophysical Journal International, 2004, 158(1): 142-168.
[122] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[123] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[124] IGEL H. Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method[J]. Geophysical Journal International, 1999, 136(3): 559-566.
[125] BAO H, BIELAK J, GHATTAS O, et al. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1): 85-102.
[126] KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3): 806-822.
[127] KOMATITSCH D, TROMP J. Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation[J]. Geophysical Journal International, 2002, 150(1): 303-318.
[128] TROMP J, TAPE C, LIU Q. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels[J]. Geophysical Journal International, 2005, 160(1): 195-216.
[129] TAPE C, LIU Q, TROMP J. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves[J]. Geophysical Journal International, 2007, 168(3): 1105-1129.
[130] ZHAO L, JORDAN T H, OLSEN K B, et al. Fréchet kernels for imaging regional earth structure based on three-dimensional reference models[J]. Bulletin of the Seismological Society of America, 2005, 95(6): 2066-2080.
[131] ZHAO L, CHEN P, JORDAN T H. Strain Green’s tensors, reciprocity, and their applications to seismic source and structure studies[J]. Bulletin of the Seismological Society of America, 2006, 96(5): 1753-1763.
[132] CHEN P, ZHAO L, JORDAN T H. Full 3D tomography for the crustal structure of the Los Angeles region[J]. Bulletin of the Seismological Society of America, 2007, 97(4): 1094-1120.
[133] CHEN P, JORDAN T H, ZHAO L. Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods[J]. Geophysical Journal International, 2007, 170(1): 175-181.
[134] GERHARD PRATT, SHIN C, HICKS. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophysical Journal International, 1998, 133(2): 341-362.
[135] ZHAO L, JORDAN T H. Structural sensitivities of finite-frequency seismic waves: a full-wave approach[J]. Geophysical Journal International, 2006, 165(3): 981-990.
[136] WANG K, YANG Y, BASINI P, et al. Refined crustal and uppermost mantle structure of southern California by ambient noise adjoint tomography[J]. Geophysical Journal International, 2018, 215(2): 844-863.
[137] RICHARDSON J P, WAITE G P. Waveform inversion of shallow repetitive long period events at Villarrica Volcano, Chile[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 4922-4936.
[138] FAN X, GUO Z, ZHAO Y, et al. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano, China/North Korea, revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 2022, 49(12): e2022GL098308.
[139] ZHAO Y, GUO Z, WANG K, et al. A large magma reservoir beneath the Tengchong volcano revealed by ambient noise adjoint tomography[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2021JB022116.
[140] BO F, HUAZHONG W. Reverse time migration with source wavefield reconstruction strategy[J]. Journal of Geophysics and Engineering, 2012, 9(1): 69-74.
[141] YANG P, GAO J, WANG B. RTM using effective boundary saving: A staggered grid GPU implementation[J]. Computers & Geosciences, 2014, 68: 64-72.
[142] ZHANG Q, ZHOU H, ZUO A, et al. Efficient boundary storage strategy for 3D elastic FWI in time domain[M]//SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014: 1142-1146.
[143] SYMES W W. Reverse time migration with optimal checkpointing[J]. Geophysics, 2007, 72(5): SM213-SM221.
[144] ANDERSON J E, TAN L, WANG D. Time-reversal checkpointing methods for RTM and FWI[J]. Geophysics, 2012, 77(4): S93-S103.
[145] CLAPP R G. Reverse time migration with random boundaries[C]//SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009: 2809-2813.
[146] FLETCHER R P, ROBERTSSON J O A. Time-varying boundary conditions in simulation of seismic wave propagation[J]. Geophysics, 2011, 76(1): A1-A6.
[147] YANG P, BROSSIER R, MÉTIVIER L, et al. Wavefield reconstruction in attenuating media: A checkpointing-assisted reverse-forward simulation method[J]. GEOPHYSICS, 2016, 81(6): R349-R362.
[148] LEE E J, HUANG H, DENNIS J M, et al. An optimized parallel LSQR algorithm for seismic tomography[J]. Computers & Geosciences, 2013, 61: 184-197.
[149] SUN W, FU L Y. Two effective approaches to reduce data storage in reverse time migration[J]. Computers & Geosciences, 2013, 56: 69-75.
[150] HUFFMAN D A. A method for the construction of minimum-redundancy codes[J]. Proceedings of the IRE, 1952, 40(9): 1098-1101.
[151] ZIV J, LEMPEL A. A universal algorithm for sequential data compression[J]. IEEE Transactions on information theory, 1977, 23(3): 337-343.
[152] WELCH T A. A technique for high-performance data compression[J]. Computer, 1984, 17(06): 8-19.
[153] WANG X, TENG Y, GAO M tan, et al. Seismic data compression based on integer wavelet transform[J]. Acta Seismologica Sinica, 2004, 17(S1): 123-128.
[154] BOVIK A C. Handbook of image and video processing[M]. Academic press, 2010.
[155] SAYOOD K. Data Compression[M]//BIDGOLI H. Encyclopedia of Information Systems. New York: Elsevier, 2003: 423-444.
[156] SPANIAS A S, JONSSON S B, STEARNS S D. Transform methods for seismic data compression[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3): 407-416.
[157] WANG Y, WU R S. Seismic data compression by an adaptive local cosine/sine transform and its effects on migration[J]. Geophysical Prospecting, 2000, 48(6): 1009-1031.
[158] DALMAU F R, HANZICH M, DE LA PUENTE J, et al. Lossy data compression with DCT transforms[C]//EAGE Workshop on High Performance Computing for Upstream. European Association of Geoscientists & Engineers, 2014: cp-426.
[159] VILLASENOR J D, ERGAS R A, DONOHO P L. Seismic data compression using high-dimensional wavelet transforms[C]//Proceedings of Data Compression Conference - DCC ’96. 1996: 396-405.
[160] AL-MOOHIMEED M A. Towards an efficient compression algorithm for seismic data[C]//2004 Asia-Pacific Radio Science Conference, 2004. Proceedings. 2004: 550-553.
[161] WU W, YANG Z, QIN Q, et al. Adaptive seismic data compression using wavelet packets[C]//2006 IEEE International Symposium on Geoscience and Remote Sensing. Denver, CO, USA: IEEE, 2006: 787-789.
[162] ZHENG F, LIU S. A fast compression algorithm for seismic data from non-cable seismographs[C]//2012 World Congress on Information and Communication Technologies. IEEE, 2012: 1215-1219.
[163] GENG Y, WU R, GAO J. Dreamlet transform applied to seismic data compression and its effects on migration[C]//SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009: 3640-3644.
[164] GENG Y, WU R S, GAO J H. Dreamlet compression of seismic data[J]. Chinese Journal of Geophysics, 2012, 55(08): 2705-2715.
[165] DUVAL L C, NAGAI T. Seismic data compression using GULLOTS[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221): Vol 3. 2001: 1765-1768.
[166] FOMEL S, LIU Y. Seislet transform and seislet frame[J]. Geophysics, 2010, 75(3): V25-V38.
[167] LINDSTROM P, CHEN P, LEE E J. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression[J]. Computers & Geosciences, 2016, 93: 45-54.
[168] 高潇, 张伟, 徐锦承, 等. 应用Squeeze算法实现地震数据高效压缩[J]. 物探化探计算技术, 2020, 42(05): 582-595.
[169] DI S, CAPPELLO F. Fast error-bounded lossy HPC data compression with SZ[C]//2016 IEEE international parallel and distributed processing symposium (ipdps). IEEE, 2016: 730-739.
[170] DI S, CAPPELLO F. Optimization of error-bounded lossy compression for hard-to-compress HPC data[J]. IEEE transactions on parallel and distributed systems, 2017, 29(1): 129-143.
[171] ZHAO K, DI S, DMITRIEV M, et al. Optimizing error-bounded lossy compression for scientific data by dynamic spline interpolation[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE). 2021: 1643-1654.
[172] BOEHM C, HANZICH M, DE LA PUENTE J, et al. Wavefield compression for adjoint methods in full-waveform inversion[J]. Geophysics, 2016, 81(6): R385-R397.
[173] ZAND T, MALCOLM A, GHOLAMI A, et al. Compressed imaging to reduce storage in adjoint-state calculations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9236-9241.
[174] HELAL E B, SAAD O M, HAFEZ A G, et al. Seismic data compression using deep learning[J]. IEEE Access, 2021, 9: 58161-58169.
[175] LIU B, MOHANDES M, NUHA H, et al. A multitone model-based seismic data compression[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021: 1-11.
[176] DA SILVA C, ZHANG Y, KUMAR R, et al. Applications of low-rank compressed seismic data to full-waveform inversion and extended image volumes[J]. Geophysics, 2019, 84(3): R371-R383.
[177] STEIN S, WYSESSION M. An introduction to seismology, earthquakes, and earth structure[M]. John Wiley & Sons, 2009.
[178] PEDERSEN H A. Impacts of non-plane waves on two-station measurements of phase velocities[J]. Geophysical Journal International, 2006, 165(1): 279-287.
[179] FOSTER A, EKSTRÖM G, NETTLES M. Surface wave phase velocities of the Western United States from a two-station method[J]. Geophysical Journal International, 2014, 196(2): 1189-1206.
[180] HAMADA K, YOSHIZAWA K. Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray[J]. Geophysical Journal International, 2015, 202(3): 1463-1482.
[181] PEDERSEN H A, BOUÉ P, POLI P, et al. Arrival angle anomalies of Rayleigh waves observed at a broadband array: a systematic study based on earthquake data, full waveform simulations and noise correlations[J]. Geophysical Journal International, 2015, 203(3): 1626-1641.
[182] HERRMANN R B. Some aspects of band-pass filtering of surface waves[J]. Bulletin of the Seismological Society of America, 1973, 63(2): 663-671.
[183] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1260.
[184] SADEGHISORKHANI H, GUDMUNDSSON Ó, TRYGGVASON A. GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations[J]. Computers & Geosciences, 2018, 110: 41-53.
[185] SADEGHISORKHANI H, GUDMUNDSSON Ó, ROBERTS R, et al. Velocity-measurement bias of the ambient noise method due to source directivity: a case study for the Swedish National Seismic Network[J]. Geophysical Journal International, 2017, 209(3): 1648-1659.
[186] SADEGHISORKHANI H, GUDMUNDSSON Ó, ROBERTS R, et al. Mapping the source distribution of microseisms using noise covariogram envelopes[J]. Geophysical Journal International, 2016, 205(3): 1473-1491.
[187] 姚华建, 徐果明, 肖翔, 等. 基于图像分析的双台面波相速度频散曲线快速提取方法[J]. 地震地磁观测与研究, 2004(01): 1-8.
[188] YANG S, ZHANG H, GU N, et al. Automatically extracting surface‐wave group and phase velocity dispersion curves from dispersion spectrograms using a convolutional neural network[J]. Seismological Research Letters, 2022, 93(3): 1549-1563.
[189] LEVSHIN A, RATNIKOVA L, BERGER J. Peculiarities of surface-wave propagation across central Eurasia[J]. Bulletin of the Seismological Society of America, 1992, 82(6): 2464-2493.
[190] RAWLINSON N, SAMBRIDGE M. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophysical Journal International, 2004, 156(3): 631-647.
[191] HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17-34.
[192] THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21: 89-93.
[193] KAUSEL E, ROËSSET J M. Stiffness matrices for layered soils[J]. Bulletin of the Seismological Society of America, 1981, 71(6): 1743-1761.
[194] SCHWAB F, KNOPOFF L. Surface-wave dispersion computations[J]. Bulletin of the Seismological Society of America, 1970, 60(2): 321-344.
[195] WATSON T H. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 161-166.
[196] ABO-ZENA A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1): 91-105.
[197] KENNETT B L N. Reflections, rays, and reverberations[J]. Bulletin of the Seismological Society of America, 1974, 64(6): 1685-1696.
[198] KENNETT B L N, KERRY N J. Seismic waves in a stratified half space[J]. Geophysical Journal International, 1979, 57(3): 557-583.
[199] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2): 391-409.
[200] MASTERS G, WOODHOUSE J H, FREEMAN G. Mineos v1.0.2 [software][CP]. Computational Infrastructure for Geodynamics, 2011.
[201] HERRMANN R B. Computer programs in seismology: an evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6): 1081-1088.
[202] GILBERT F, BACKUS G E. Propagator matrices in elastic wave and vibration problems[J]. Studia Geophysica et Geodaetica, 1966, 10(3): 271-271.
[203] FUCHS K, MULLER G. Computation of synthetic seismograms with the reflectivity method and comparison with observations[J]. Geophysical Journal International, 1971, 23(4): 417-433.
[204] BOUCHON M, AKI K. Discrete wave-number representation of seismic-source wave fields[J]. Bulletin of the Seismological Society of America, 1977, 67(2): 259-277.
[205] ČERVENỲ V, KLIMEŠ L, PŠENČÍK I. Paraxial ray approximations in the computation of seismic wavefields in inhomogeneous media[J]. Geophysical Journal International, 1984, 79(1): 89-104.
[206] ČERVENÝ V, POPOV M M, PŠENČÍK I. Computation of wave fields in inhomogeneous media — Gaussian beam approach[J]. Geophysical Journal International, 1982, 70(1): 109-128.
[207] CHAPMAN C H. Ray theory and its extensions: WKBJ and Maslov seismograms[J]. Journal of Geophysics, 1985, 58(1): 27-43.
[208] TAM C K, WEBB J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of computational physics, 1993, 107(2): 262-281.
[209] HIXON R. On increasing the accuracy of MacCormack schemes for aeroacoustic applications[C]//3rd AIAA/CEAS Aeroacoustics Conference. 1997: 1586.
[210] ZHANG W, SHEN Y. Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling[J]. Geophysics, 2010, 75(4): T141-T154.
[211] LUO J, WU R S. Seismic envelope inversion: reduction of local minima and noise resistance[J]. Geophysical Prospecting, 2015, 63(3): 597-614.
[212] GROOS L, SCHÄFER M, FORBRIGER T, et al. Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves workflow for FWI of Rayleigh waves[J]. Geophysics, 2017, 82(2): R109-R117.
[213] TAPE C H. Seismic tomography of southern California using adjoint methods[D]. California Institute of Technology, 2009.
[214] YUAN Y O, BOZDAĞ E, CIARDELLI C, et al. The exponentiated phase measurement, and objective-function hybridization for adjoint waveform tomography[J]. Geophysical Journal International, 2020, 221(2): 1145-1164.
[215] PÉREZ SOLANO C A, DONNO D, CHAURIS H. Alternative waveform inversion for surface wave analysis in 2-D media[J]. Geophysical Journal International, 2014, 198(3): 1359-1372.
[216] FICHTNER A, KENNETT B L N, IGEL H, et al. Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain[J]. Geophysical Journal International, 2008, 175(2): 665-685.
[217] CHOI Y, ALKHALIFAH T. Frequency-domain waveform inversion using the unwrapped phase[C]//SEG International Exposition and Annual Meeting. SEG, 2011: SEG-2011-2576.
[218] DJEBBI R, ALKHALIFAH T. Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase[J]. Geophysical Journal International, 2014, 197(2): 975-986.
[219] YUAN Y O, SIMONS F J, TROMP J. Double-difference adjoint seismic tomography[J]. Geophysical Journal International, 2016, 206(3): 1599-1618.
[220] TOHTI M, LIU J, XIAO W, et al. Full‐waveform inversion of surface waves based on instantaneous‐phase coherency[J]. Near Surface Geophysics, 2022, 20(5): 494-506.
[221] SCHIMMEL M, STUTZMANN E, GALLART J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale: Ambient noise signal extraction[J]. Geophysical Journal International, 2011, 184(1): 494-506.
[222] YUAN Y O, BOZDAĞ E, CIARDELLI C, et al. The exponentiated phase measurement, and objective-function hybridization for adjoint waveform tomography[J]. Geophysical Journal International, 2020, 221(2): 1145-1164.
[223] FICHTNER A, TRAMPERT J, CUPILLARD P, et al. Multiscale full waveform inversion[J]. Geophysical Journal International, 2013, 194(1): 534-556.
[224] AKI K, RICHARDS P G. Quantitative seismology[M]. University Science Books, 2002.
[225] NOLET G. Seismic wave propagation and seismic tomography[M]//NOLET G. Seismic tomography: with applications in global seismology and exploration geophysics. Dordrecht: Springer Netherlands, 1987: 1-23.
[226] KARAMI A, YAZDI M, MERCIER G. Compression of hyperspectral images using discerete wavelet transform and tucker decomposition[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2012, 5(2): 444-450.
[227] HATCH D R, DEL-CASTILLO-NEGRETE D, TERRY P W. Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition[J]. Journal of Computational Physics, 2012, 231(11): 4234-4256.
[228] AFRA S, GILDIN E, TARRAHI M. Heterogeneous reservoir characterization using efficient parameterization through higher order SVD (HOSVD)[C]//2014 American Control Conference. 2014: 147-152.
[229] GARCÍA-MAGARIÑO A, SOR S, VELAZQUEZ A. Data reduction method for droplet deformation experiments based on High Order Singular Value Decomposition[J]. Experimental Thermal and Fluid Science, 2016, 79: 13-24.
[230] AUSTIN W, BALLARD G, KOLDA T G. Parallel tensor compression for large-scale scientific data[C]//2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2016: 912-922.
[231] BALLARD G, KLINVEX A, KOLDA T G. TuckerMPI: A parallel C++/MPI software package for large-scale data compression via the tucker tensor decomposition[J]. ACM Transactions on Mathematical Software (TOMS), 2020, 46(2): 1-31.
[232] KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500.
[233] VANNIEUWENHOVEN N, VANDEBRIL R, MEERBERGEN K. A new truncation strategy for the higher-order singular value decomposition[J]. SIAM Journal on Scientific Computing, 2012, 34(2): A1027-A1052.
[234] VERSTEEG R. The Marmousi experience: velocity model determination on a synthetic complex data set[J]. The Leading Edge, 1994, 13(9): 927-936.
[235] LINDSTROM P. Fixed-rate compressed floating-point arrays[J]. IEEE transactions on visualization and computer graphics, 2014, 20(12): 2674-2683.
[236] LIANG X, DI S, TAO D, et al. Error-controlled lossy compression optimized for high compression ratios of scientific datasets[C]//2018 IEEE International Conference on Big Data (Big Data). Seattle, WA, USA: IEEE, 2018: 438-447.
[237] ZHANG J, ZHUO X, MOON A, et al. Efficient encoding and reconstruction of HPC datasets for checkpoint/restart[C]//2019 35th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 2019: 79-91.
[238] BALLESTER-RIPOLL R, PAJAROLA R. Lossy volume compression using Tucker truncation and thresholding[J]. The Visual Computer, 2016, 32(11): 1433-1446.
[239] BALLESTER-RIPOLL R, LINDSTROM P, PAJAROLA R. TTHRESH: tensor compression for multidimensional visual data[J]. IEEE transactions on visualization and computer graphics, 2019, 26(9): 2891-2903.
[240] LIU Y, YAO H, ZHANG H, et al. The community velocity model v.1.0 of southwest china, constructed from joint body- and surface-wave travel-time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987.
[241] YANG Y, LANGSTON C A, POWELL C A, et al. Full waveform ambient noise tomography for the northern mississippi embayment[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB022267.
[242] CHEN P, LEE E J. Full-3D seismic waveform inversion: Theory, software and practice[M]. Springer, 2015.
[243] MOONEY H M, BOLT B A. Dispersive characteristics of the first three Rayleigh modes for a single surface layer[J]. Bulletin of the Seismological Society of America, 1966, 56(1): 43-67.
[244] MALISCHEWSKY P G, SCHERBAUM F, LOMNITZ C, et al. The domain of existence of prograde Rayleigh-wave particle motion for simple models[J]. Wave Motion, 2008, 45(4): 556-564.
[245] JONES G H S, MAUKEAU G T, CYGANIK S A. Air-blast coupling to prograde and retrograde surface waves[J]. Journal of Geophysical Research (1896-1977), 1963, 68(17): 4979-4987.
[246] GRIBLER G, LIBERTY L M, MIKESELL T D, et al. Isolating retrograde and prograde Rayleigh-wave modes using a polarity mute[J]. Geophysics, 2016, 81(5): V379-V385.
[247] GRIBLER G, MIKESELL T D. Methods to isolate retrograde and prograde Rayleigh-wave signals[J]. Geophysical Journal International, 2019, 219(2): 975-994.
[248] ZHANG Z, YAO H. Sichuan Basin dipsersion data & velocity model[DS/OL]. Zenodo, 2021
[2023-08-21]. https://zenodo.org/record/5520155.
[249] ZHANG A, GUO Z, DAI H, et al. Thermochemical structure and melting distribution of the upper mantle beneath intraplate volcanic areas in eastern South China Block[DS/OL]. Zenodo, 2022
[2022-12-29]. https://zenodo.org/record/7491753.
[250] TURUNCTUR B, EKEN T, CHEN Y, et al. Dataset and 3D Vs model for “Crustal velocity images of north-western Türkiye along theNorth Anatolian Fault Zone from transdimensional Bayesian ambient seismic noise tomography”[DS/OL]. Zenodo, 2023
[2023-08-21]. https://zenodo.org/record/7645203.
[251] QIAN H, MECHIE J. Temporary seismological network in Longmenshan[DS/.mseed,XML]. GFZ Data Services, 2012: 392 GB. http://geofon.gfz-potsdam.de/waveform/archive/network.php?ncode=2F&year=2012.
[252] QIAN H, MECHIE J, LI H, et al. An approach to jointly invert hypocenters and 1D velocity structure and its application to the Lushan earthquake series[J]. Journal of Seismology, 2016, 20(1): 213-232.
[253] QIAN H, MECHIE J, LI H, et al. Structure of the crust and mantle down to 700 km depth beneath the Longmenshan from P receiver functions[J]. Tectonics, 2018, 37(6): 1688-1708.
[254] QIAN H, YU C, MECHIE J, et al. Dense seismological array and profile across the Longmenshan and the deep extension of the Pengguan complex[J]. Tectonophysics, 2022, 823: 229193.
[255] FENG M, QIAN H, MECHIE J, et al. Crustal seismogenic structures and deformation styles along the Longmen Shan Fault belt in the eastern Tibetan Plateau inferred from ambient noise tomography[J]. Tectonophysics, 2021, 798: 228689.
[256] 许志琴, 吴忠良, 李海兵, 等. 世界上最快回应大地震的汶川地震断裂带科学钻探[J]. 地球物理学报, 2018, 61(5): 1666-1679.
[257] 雷建设, 赵大鹏, 苏金蓉, 等. 龙门山断裂带地壳精细结构与汶川地震发震机理[J]. 地球物理学报, 2009, 52(2): 339-345.
[258] 邓文泽, 陈九辉, 郭飚, 等. 龙门山断裂带精细速度结构的双差层析成像研究[J]. 地球物理学报, 2014, 57(4): 1101-1110.
[259] ZHANG Z, WANG Y, CHEN Y, et al. Crustal structure across Longmenshan fault belt from passive source seismic profiling[J]. Geophysical Research Letters, 2009, 36: L17310.
[260] 王绪本, 朱迎堂, 赵锡奎, 等. 青藏高原东缘龙门山逆冲构造深部电性结构特征[J]. 地球物理学报, 2009, 52(2): 564-571.
[261] WANG C Y, ZHU L, LOU H, et al. Crustal thicknesses and Poisson’s ratios in the eastern Tibetan Plateau and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11): B11301.
[262] LIU Q Y, VAN DER HILST R D, LI Y, et al. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 2014, 7(5): 361-365.
[263] PAVLIS G L, VERNON F L. Array processing of teleseismic body waves with the USArray[J]. Computers & Geosciences, 2010, 36(7): 910-920.
[264] YANG X, BRYAN J, OKUBO K, et al. Optimal stacking of noise cross-correlation functions[J]. Geophysical Journal International, 2023, 232(3): 1600-1618.
[265] TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864.
[266] WU R S, LUO J, WU B. Seismic envelope inversion and modulation signal model[J]. Geophysics, 2014, 79(3): WA13-WA24.
[267] BOZDAĞ E, TRAMPERT J, TROMP J. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements: Misfit functions for full waveform inversion[J]. Geophysical Journal International, 2011, 185(2): 845-870.
修改评论