[1] BERTALMIO M, SAPIRO G, CASELLES V, et al. Image Inpainting[C]//SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. USA: ACM Press/Addison-Wesley Publishing Co., 2000: 417–424.
[2] CHAN T F, SHEN J. Nontexture Inpainting by Curvature-Driven Diffusions[J/OL]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436449. DOI: https://doi.org/10.1006/jvci.2001.0487.
[3] SHEN J, CHAN T F. Mathematical Models for Local Nontexture Inpaintings[J/OL]. SIAM J. Appl. Math., 2002, 62(3): 1019–1043. DOI: 10.1137/S0036139900368844.
[4] RICHARD M, CHANG M. Fast digital image inpainting[C]//Appeared in the Proceedings of the International Conference on Visualization, Imaging and Image Processing (VIIP 2001), Marbella, Spain. 2001: 106-107.
[5] EFROS A, LEUNG T. Texture synthesis by non-parametric sampling[C/OL]//IEEE International Conference on Computer Vision: volume 2. 1999: 1033-1038 vol.2. DOI: 10.1109/ICCV.1999.790383.
[6] BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing[J/OL]. ACM Transactions on Graphics, 2009, 28(3). DOI: 10.1145/1531326.1531330.
[7] HE K, SUN J. Statistics of patch offsets for image completion[C]//Proceedings of the European conference on computer vision. 2012: 1629.
[8] HE K, SUN J. Image completion approaches using the statistics of similar patches[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(12): 2423-2435.
[9] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[10] PATHAK D, KRäHENBüHL P, DONAHUE J, et al. Context Encoders: Feature Learning by Inpainting[C/OL]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2016: 2536-2544. DOI: 10.1109/CVPR.2016.278.
[11] IIZUKA S, SIMOSERRA E, ISHIKAWA H. Globally and Locally Consistent Image Completion[J/OL]. ACM Transactions on Graphics, 2017, 36(4).
[12] YU J, LIN Z, YANG J, et al. Generative Image Inpainting with Contextual Attention[C/OL]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 55055514. DOI:10.1109/CVPR.2018.00577.
[13] ZENG Y, GONG Y, ZHANG J. Feature learning and patch matching for diverse image inpainting[J/OL]. Pattern Recognition, 2021, 119: 108036.
[14] ZHENG C, CHAM T J, CAI J, et al. Bridging Global Context Interactions for High-Fidelity Image Completion[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
[15] YU F, KOLTUN V. Multi-Scale Context Aggregation by Dilated Convolutions[C]//International Conference on Learning Representations. 2016.
[16] LIU G, REDA F A, SHIH K J, et al. Image Inpainting for Irregular Holes Using Partial Convolutions[C]//Proceedings of the European conference on computer vision. 2018: 89-105.
[17] YU J, LIN Z, YANG J, et al. Free-Form Image Inpainting With Gated Convolution[C]//IEEE/CVF International Conference on Computer Vision. 2019.
[18] SUVOROV R, LOGACHEVA E, MASHIKHIN A, et al. Resolution-robust Large Mask Inpainting with Fourier Convolutions[C/OL]//IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 3172-3182. DOI: 10.1109/WACV51458.2022.00323.
[19] CHI L, JIANG B, MU Y. Fast Fourier Convolution[C/OL]//LAROCHELLE H, RANZATO M, HADSELL R, et al. Advances in Neural Information Processing Systems: volume 33. Curran Associates, Inc., 2020: 4479-4488.
[20] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//International conference on machine learning. PMLR, 2017: 214-223.
[21] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved Training of Wasserstein GANs[C]//GUYON I, LUXBURG U V, BENGIO S, et al. Advances in Neural Information Processing Systems: volume 30. Curran Associates, Inc., 2017.
[22] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral Normalization for Generative Adversarial Networks[C]//International Conference on Learning Representations. 2018.
[23] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[24] MATHIEU M, COUPRIE C, LECUN Y. Deep multiscale video prediction beyond mean square error[C]//International Conference on Learning Representations. 2016.
[25] KARRAS T, LAINE S, AILA T. A stylebased generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4401-4410.
[26] CHOI Y, UH Y, YOO J, et al. Stargan v2: Diverse image synthesis for multiple domains[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 8188-8197.
[27] KIM J, KIM M, KANG H, et al. U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation[C]//International Conference on Learning Representations. 2020.
[28] NOWOZIN S, CSEKE B, TOMIOKA R. fgan: Training generative neural samplers using variational divergence minimization[J]. Advances in neural information processing systems, 2016, 29.
[29] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training gans[J]. Advances in neural information processing systems, 2016, 29.
[30] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium[J]. Advances in neural information processing systems, 2017, 30.
[31] ARJOVSKY M, BOTTOU L. Towards Principled Methods for Training Generative Adversarial Networks[C]//International Conference on Learning Representations. 2017.
[32] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-Attention Generative Adversarial Networks[C]//International Conference on Machine Learning: volume 97. 2019: 7354-7363.
[33] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[34] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision. 2018: 3-19.
[35] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 77947803.
[36] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[A]. 2014.
[37] LUONG M T, PHAM H, MANNING C D. Effective Approaches to Attention-based Neural Machine Translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 14121421.
[38] RENSINK R A. The dynamic representation of scenes[J]. Visual cognition, 2000, 7(1-3): 17-42.
[39] CORBETTA M, SHULMAN G L. Control of goal-directed and stimulus-driven attention in the brain[J]. Nature reviews neuroscience, 2002, 3(3): 201215.
[40] YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification [C]//Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies. 2016: 14801489.
[41] CHOROWSKI J K, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[J]. Advances in neural information processing systems, 2015, 28.
[42] PARMAR N, VASWANI A, USZKOREIT J, et al. Image transformer[C]//International conference on machine learning. PMLR, 2018: 4055-4064.
[43] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[C]//Advances in Neural Information Processing Systems: volume 30. 2017.
[44] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C]//International Conference on Learning Representations. 2018.
[45] XIE C, LIU S, LI C, et al. Image Inpainting With Learnable Bidirectional Attention Maps[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
[46] ZHENG C, CHAM T J, CAI J. Pluralistic Image Completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 14381447.
[47] ZHENG C, CHAM T, CAI J. TFill: Image Completion via a Transformer-Based Architecture[J]. CoRR, 2021, abs/2104.00845.
[48] LIU H, JIANG B, XIAO Y, et al. Coherent Semantic Attention for Image Inpainting[C/OL]//IEEE/CVF International Conference on Computer Vision. 2019: 4169-4178. DOI: 10.1109/ICCV.2019.00427.
[49] LARSEN A B L, SØNDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[C]//International conference on machine learning. PMLR, 2016: 1558-1566.
[50] DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C/OL]//IEEE Conference on Computer Vision and Pattern Recognition. 2009: 248255. DOI: 10.1109/CVPR.2009.5206848.
[51] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2818-2826.
[52] YANG C, LU X, LIN Z, et al. HighResolution Image Inpainting Using Multi-scale Neural Patch Synthesis[C/OL]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2017: 40764084. DOI: 10.1109/CVPR.2017.434.
[53] NAZERI K, NG E, JOSEPH T, et al. EdgeConnect: Structure Guided Image Inpainting using Edge Prediction[C/OL]//IEEE/CVF International Conference on Computer Vision Workshop. 2019: 3265-3274. DOI: 10.1109/ICCVW.2019.00408.
[54] WAN Z, ZHANG J, CHEN D, et al. HighFidelity Pluralistic Image Completion with Transformers[C/OL]//IEEE/CVF International Conference on Computer Vision. 2021: 4672-4681. DOI: 10.1109/ICCV48922.2021.00465.
[55] XU R, GUO M, WANG J, et al. Texture Memory-Augmented Deep Patch-Based Image Inpainting[J/OL]. IEEE Transactions on Image Processing, 2021, 30: 91129124. DOI: 10.1109/TIP.2021.3122930.
[56] LIU H, JIANG B, XIAO Y, et al. Coherent Semantic Attention for Image Inpainting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
[57] AGARWALA A, PENNINGTON J, DAUPHIN Y, et al. Temperature check: theory and practice for training models with softmax-cross-entropy losses[A]. 2020.
[58] ZHANG X, YU F X, KARAMAN S, et al. Heated-up softmax embedding[A]. 2018.
[59] GUO C, PLEISS G, SUN Y, et al. On Calibration of Modern Neural Networks[C]//International Conference on Machine Learning. 2017: 1321–1330.
[60] HEIN M, ANDRIUSHCHENKO M, BITTERWOLF J. Why relu networks yield high-confidence predictions far away from the training data and how to mitigate the problem[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 4150.
[61] HINTON G, VINYALS O, DEAN J. Distilling the Knowledge in a Neural Network[C]//NIPS Deep Learning and Representation Learning Workshop. 2015.
[62] RAJASEGARAN J, KHAN S, HAYAT M, et al. Self-supervised Knowledge Distillation for Few-shot Learning[C]//British Machine Vision Conference. 2021.
[63] CHEN T, KORNBLITH S, NOROUZI M, et al. A Simple Framework for Contrastive Learning of Visual Representations[C]//International Conference on Machine Learning: volume 119. 2020: 1597-1607.
[64] ZHANG O, WU M, BAYROOTI J, et al. Temperature as Uncertainty in Contrastive Learning[C]//NeurIPS Self-Supervised Learning Theory and Practice Workshop. 2021.
[65] WANG F, LIU H. Understanding the behaviour of contrastive loss[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 24952504.
[66] PLÖTZ T, ROTH S. Neural nearest neighbors networks[J]. Advances in Neural Information Processing Systems, 2018, 31: 10871098.
[67] CACCIA M, CACCIA L, FEDUS W, et al. Language GANs Falling Short[C]//International Conference on Learning Representations. 2020.
[68] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. SCIENCE, 1983, 220(4598): 671-680.
[69] ACKLEY D H, HINTON G E, SEJNOWSKI T J. A learning algorithm for Boltzmann machines[J]. Cognitive science, 1985, 9(1): 147169.
[70] SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. MIT press, 2018.
[71] HE Y L, ZHANG X L, AO W, et al. Determining the optimal temperature parameter for Softmax function in reinforcement learning[J/OL]. Applied Soft Computing, 2018, 70: 80-85. https://www.sciencedirect.com/science/article/pii/S1568494618302758. DOI: https://doi.org/10.1016/j.asoc.2018.05.012.
[72] LIN J, SUN X, REN X, et al. Learning When to Concentrate or Divert Attention: SelfAdaptive Attention Temperature for Neural Machine Translation[C/OL]//Conference on Empirical Methods in Natural Language Processing. 2018: 29852990. DOI: 10.18653/v1/D18-1331.
[73] RADFORD A, KIM J W, HALLACY C, et al. Learning Transferable Visual Models From Natural Language Supervision[C]//International Conference on Machine Learning: volume 139. 2021: 8748-8763.
[74] CHELLAPILLA K, PURI S, SIMARD P. High Performance Convolutional Neural Networks for Document Processing[C]//International Workshop on Frontiers in Handwriting Recognition. Suvisoft, 2006.
[75] ZHOU X, ZENG Y, GONG Y. Image Completion with Adaptive Multi-Temperature Mask-Guided Attention[C]//British Machine Vision Conference. 2021.
[76] LIN J, SUN X, REN X, et al. Learning When to Concentrate or Divert Attention: SelfAdaptive Attention Temperature for Neural Machine Translation[C/OL]//Conference on Empirical Methods in Natural Language Processing. 2018: 29852990. DOI: 10.18653/v1/D18-1331.
[77] DOERSCH C, SINGH S, GUPTA A, et al. What Makes Paris Look like Paris?[J]. ACM Transactions on Graphics (SIGGRAPH), 2012, 31(4): 1-9.
[78] KARRAS T, AILA T, LAINE S, et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation[C]//International Conference on Learning Representations. 2018.
[79] ZHOU B, LAPEDRIZA A, KHOSLA A, et al. Places: A 10 million Image Database for Scene Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
[80] SAHARIA C, CHAN W, SAXENA S, et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[C/OL]//KOYEJO S, MOHAMED S, AGARWAL A, et al. Advances in Neural Information Processing Systems: volume 35. Curran Associates, Inc., 2022: 3647936494.
[81] YU Y, ZHAN F, LU S, et al. WaveFill: A Wavelet-based Generation Network for Image Inpainting[C]//IEEE/CVF International Conference on Computer Vision. 2021.
[82] SU Z, LIU W, YU Z, et al. Pixel Difference Networks for Efficient Edge Detection[C]//IEEE/CVF International Conference on Computer Vision. 2021: 5117-5127.
[83] VINCENT L. Morphological Area Openings and Closings for Grey-scale Images[C]//Shape in Picture. 1994: 197-208.
[84] MARAGOS P, SCHAFER R. Morphological skeleton representation and coding of binary images[J/OL]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1228-1244. DOI: 10.1109/TASSP.1986.1164959.
修改评论