题名 | ORGAN: Observation-Guided Radiology Report Generation via Tree Reasoning |
作者 | |
通讯作者 | Li, Wenjie; Liu, Jiang |
发表日期 | 2023
|
会议名称 | 61st Annual Meeting of the the Association-for-Computational-Linguistics (ACL)
|
会议录名称 | |
会议日期 | JUL 09-14, 2023
|
会议地点 | null,Toronto,CANADA
|
出版地 | 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA
|
出版者 | |
摘要 | This paper explores the task of radiology report generation, which aims at generating free-text descriptions for a set of radiographs. One significant challenge of this task is how to correctly maintain the consistency between the images and the lengthy report. Previous research explored solving this issue through planningbased methods, which generate reports only based on high-level plans. However, these plans usually only contain the major observations from the radiographs (e.g., lung opacity), lacking much necessary information, such as the observation characteristics and preliminary clinical diagnoses. To address this problem, the system should also take the image information into account together with the textual plan and perform stronger reasoning during the generation process. In this paper, we propose an Observation-guided radiology Report GenerAtioN framework (ORGAN). It first produces an observation plan and then feeds both the plan and radiographs for report generation, where an observation graph and a tree reasoning mechanism are adopted to precisely enrich the plan information by capturing the multiformats of each observation. Experimental results demonstrate that our framework outperforms previous state-of-the-art methods regarding text quality and clinical efficacy.(1) |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | General Program of National Natural Science Foundation of China["82272086","62076212"]
; Guangdong Provincial Department of Education[2020ZDZX3043]
; Shenzhen Natural Science Fund[JCYJ20200109140820699]
; Research Grants Council of Hong Kong["15207920","15207821","15207122"]
; Shenzhen Natural Science Fund (Stable Support Plan Program)[20200925174052004]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001181086807022
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/673951 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computing, The Hong Kong Polytechnic University, Hong Kong 2.Research Institute of Trustworthy Autonomous Systems, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Hou, Wenjun,Xu, Kaishuai,Cheng, Yi,et al. ORGAN: Observation-Guided Radiology Report Generation via Tree Reasoning[C]. 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:ASSOC COMPUTATIONAL LINGUISTICS-ACL,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论