中文版 | English
题名

Medical Dialogue Generation via Dual Flow Modeling

作者
发表日期
2023
会议名称
61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
ISSN
0736-587X
ISBN
9781959429623
会议录名称
页码
6771-6784
会议日期
July 9, 2023 - July 14, 2023
会议地点
Toronto, ON, Canada
会议录编者/会议主办者
Bloomberg; et al.; Google Research; LIVEPERSON; Meta; Microsoft
出版者
摘要
Medical dialogue systems (MDS) aim to provide patients with medical services, such as diagnosis and prescription. Since most patients cannot precisely describe their symptoms, dialogue understanding is challenging for MDS. Previous studies mainly addressed this by extracting the mentioned medical entities as critical dialogue history information. In this work, we argue that it is also essential to capture the transitions of the medical entities and the doctor's dialogue acts in each turn, as they help the understanding of how the dialogue flows and enhance the prediction of the entities and dialogue acts to be adopted in the following turn. Correspondingly, we propose a Dual Flow enhanced Medical (DFMED) dialogue generation framework. It extracts the medical entities and dialogue acts used in the dialogue history and models their transitions with an entity-centric graph flow and a sequential act flow, respectively. We employ two sequential models to encode them and devise an interweaving component to enhance their interactions. Experiments on two datasets demonstrate that our method exceeds baselines in both automatic and manual evaluations.
© 2023 Association for Computational Linguistics.
学校署名
其他
语种
英语
收录类别
资助项目
This work was supported by the Research Grants Council of Hong Kong (15207920, 15207821, 15207122) and National Natural Science Foundation of China (62076212).
EI入藏号
20234515012685
EI主题词
Diagnosis ; Speech processing
EI分类号
Medicine and Pharmacology:461.6 ; Speech:751.5 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673952
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computing, The Hong Kong Polytechnic University, Hong Kong
2.Research Institute of Trustworthy Autonomous Systems, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Xu, Kaishuai,Hou, Wenjun,Cheng, Yi,et al. Medical Dialogue Generation via Dual Flow Modeling[C]//Bloomberg; et al.; Google Research; LIVEPERSON; Meta; Microsoft:Association for Computational Linguistics (ACL),2023:6771-6784.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu, Kaishuai]的文章
[Hou, Wenjun]的文章
[Cheng, Yi]的文章
百度学术
百度学术中相似的文章
[Xu, Kaishuai]的文章
[Hou, Wenjun]的文章
[Cheng, Yi]的文章
必应学术
必应学术中相似的文章
[Xu, Kaishuai]的文章
[Hou, Wenjun]的文章
[Cheng, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。