中文版 | English
题名

Learned Adapters Are Better Than Manually Designed Adapters

作者
通讯作者Zhu, Wei
发表日期
2023
会议名称
61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
ISSN
0736-587X
ISBN
9781959429623
会议录名称
页码
7420-7437
会议日期
July 9, 2023 - July 14, 2023
会议地点
Toronto, ON, Canada
会议录编者/会议主办者
Bloomberg; et al.; Google Research; LIVEPERSON; Meta; Microsoft
出版者
摘要
Recently, a series of works have looked into further improving the adapter-based tuning by manually designing better adapter architectures. Understandably, these manually designed solutions are sub-optimal. In this work, we propose the Learned Adapter framework to automatically learn the optimal adapter architectures for better task adaptation of pre-trained models (PTMs). First, we construct a unified search space for adapter architecture designs. In terms of the optimization method on the search space, we propose a simple-yet-effective method, GDNAS, for better architecture optimization. Extensive experiments show that our Learned Adapter framework can outperform the previous parameter-efficient tuning (PETuning) baselines while tuning comparable or fewer parameters. Moreover: (a) the learned adapter architectures are explainable and transferable across tasks. (b) We demonstrate that our architecture search space design is valid.
© 2023 Association for Computational Linguistics.
学校署名
其他
语种
英语
收录类别
EI入藏号
20234515012228
EI主题词
Computational linguistics
EI分类号
Buildings and Towers:402 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
来源库
EV Compendex
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673968
专题南方科技大学
作者单位
1.College of Computer Science and Software Engineering, Shenzhen University, China
2.Tomorrow Advancing Life, China
3.Southern University of Science and Technology, China
4.East China Normal University, China
推荐引用方式
GB/T 7714
Zhang, Yuming,Wang, Peng,Tan, Ming,et al. Learned Adapters Are Better Than Manually Designed Adapters[C]//Bloomberg; et al.; Google Research; LIVEPERSON; Meta; Microsoft:Association for Computational Linguistics (ACL),2023:7420-7437.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Yuming]的文章
[Wang, Peng]的文章
[Tan, Ming]的文章
百度学术
百度学术中相似的文章
[Zhang, Yuming]的文章
[Wang, Peng]的文章
[Tan, Ming]的文章
必应学术
必应学术中相似的文章
[Zhang, Yuming]的文章
[Wang, Peng]的文章
[Tan, Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。