中文版 | English
题名

LECO: Improving Early Exiting via Learned Exits and Comparison-based Exiting Mechanism

作者
通讯作者Zhu, Wei
发表日期
2023
会议名称
61st Annual Meeting of the Association-for-Computational-Linguistics / Student Research Workshop (ACL-SRW)
会议录名称
会议日期
JUL 10-12, 2023
会议地点
null,Toronto,CANADA
出版地
209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA
出版者
摘要
Recently, dynamic early exiting has attracted much attention since it can accelerate the inference speed of pre-trained models (PTMs). However, previous work on early exiting has neglected the intermediate exits' architectural designs. In this work, we propose a novel framework, Learned Exits and COmparison-based early exiting (LECO) to improve PTMs' early exiting performances. First, to fully uncover the potentials of multi-exit BERT, we design a novel search space for intermediate exits and employ the idea of differentiable neural architecture search (DNAS) to design proper exit architectures for different intermediate layers automatically. Second, we propose a simple-yet-effective comparison-based early exiting mechanism (COBEE), which can help PTMs achieve better performance and speedup tradeoffs. Extensive experiments show that our LECO achieves the SOTA performances for multi-exit BERT training and dynamic early exiting.
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001181053700029
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/673970
专题南方科技大学
作者单位
1.University of Ottawa, Canada
2.Southern University of Science and Technology, China
3.Chongqing University of Post and Telecommunication, China
4.Brunel University, London, United Kingdom
5.East China Normal University, China
推荐引用方式
GB/T 7714
Zhang, Jingfan,Tan, Ming,Dai, Pengyu,et al. LECO: Improving Early Exiting via Learned Exits and Comparison-based Exiting Mechanism[C]. 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:ASSOC COMPUTATIONAL LINGUISTICS-ACL,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Jingfan]的文章
[Tan, Ming]的文章
[Dai, Pengyu]的文章
百度学术
百度学术中相似的文章
[Zhang, Jingfan]的文章
[Tan, Ming]的文章
[Dai, Pengyu]的文章
必应学术
必应学术中相似的文章
[Zhang, Jingfan]的文章
[Tan, Ming]的文章
[Dai, Pengyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。