中文版 | English
题名

金属激光增材制造熔池传热流动行为与凝固组织研究

其他题名
RESEARCH ON THERMO-FLUID FLOW BEHAVIOR OF MOLTEN POOL AND SOLIDIFICATION MICROSTRUCTURE IN METAL LASER ADDITIVE MANUFACTURING
姓名
姓名拼音
ZHOU Yang
学号
11849605
学位类型
博士
学位专业
0802 机械工程
学科门类/专业学位类别
08 工学
导师
朱强
导师单位
机械与能源工程系
论文答辩日期
2023-10-19
论文提交日期
2024-01-13
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

激光增材制造因其逐点逐层成型的特性,能够快速精确地制造具有复杂结构的零件和传统难加工材料的直接成型。但是将激光增材制造应用于航空航天等高附加值行业中仍存在诸多挑战,其中之一为合金凝固组织难以按需定制。熔池是激光增材制造中最基本的单元,其内部的传热流动行为直接决定了凝固条件和凝固组织特征。因此,揭示激光增材制造熔池传热流动行为、凝固条件与凝固组织的内在关联,探索有效的凝固组织调控手段,是实现凝固组织可控的高性能金属零件的激光增材制造所必须要突破的重点和难点。本文围绕金属激光增材制造中熔池传热流动行为与凝固组织进行研究,并从凝固行为调控和熔池流动行为调控两方面探索了可用于激光增材制造中的凝固组织定制方法。

激光粉床熔融(Laser powder bed fusion, L-PBF)和激光直接能量沉积(Laser direct energy deposition, L-DED)可视为两种具有不同能量输入水平的激光增材制造过程。通过建立L-PBF和L-DED两种工艺的熔池传热流动模型,对比研究了两种熔池的传热流动行为、凝固条件和凝固组织特征,揭示了激光增材制造熔池传热流动行为对凝固条件的影响机制。激光位置和熔体流动共同决定了熔池内部温度梯度的分布特征,熔体回流会导致凝固界面上的温度梯度等高线向熔池前方偏移。L-PBF熔池和L-DED熔池尾部熔体流动驱动力的差异使得其凝固界面上的热量传递机制分别为熔体流动主导和热传导主导。这种热量传递机制的差异导致了凝固界面的冷却速率分布特征在L-PBF熔池为底部高于顶部,而在L-DED熔池中则为顶部高于底部,进而导致了两种熔池内部的一次枝晶间距分布特征相反。

基于熔池模拟与凝固组织生长理论,研究了合金在激光增材制造中的柱状晶向等轴晶转变(Columnar-to-equiaxed transition, CET)行为。提出了一种新的过冷度与凝固速率的关联函数,成功将CET理论模型的适用范围拓展到涵盖L-PBF工艺的高凝固速率区间。结合熔池模拟,解释了在L-PBF工艺中,调整激光功率和扫描速度,晶粒仍以外延生长的原因。在L-PBF工艺的凝固速率区间,合金凝固过程中产生CET的临界温度梯度存在阈值(对镍基高温合金约为107 K/m),而调整激光功率和扫描速度,熔池凝固界面的温度梯度仍高于CET阈值且未出现下降趋势。进一步分析材料参数对合金CET行为的影响,发现合金成分导致的CET临界凝固条件的变化比热物理属性导致的熔池凝固条件变化对合金CET行为的影响更显著。

基于激光增材制造熔池凝固条件特征与合金在其中的CET行为特征,提出了基于过冷度优化的晶粒形态定制方法。通过该方法预测了Al/Cu二元合金和Ti-Al-V系钛合金在激光增材制造中形成等轴晶的成分,并通过原位合金化技术制备试样,验证了该方法在激光增材制造工艺中应用的可行性。针对原位合金化中存在的成分不均缺陷,建立了耦合合金相图的熔池传热传质流动模型,研究了粉末熔化、熔体混合和成分不均区域形成的动态过程,揭示了提高能量输入促进元素均匀化的机制为对流搅拌时间和驱动力同步提高,提出了对流搅拌数来表征熔池流动特性,并建立了指导原位合金化工艺参数设计的工艺参数图。

基于熔池凝固条件受熔体流动影响的原理,采用仿真分析与实验相结合的方法,探究了可用于调控熔体流动的磁场技术在激光增材制造中应用的可行性。建立了耦合磁场的熔池传热流动模型,研究了磁场模式对熔池传热流动行为和凝固条件的影响。施加静磁场所激发的洛伦兹力有助于提高熔体流动的稳定性,而交变磁场和震荡磁场所激发的周期性变化的有效洛伦兹力会使熔体流速呈现周期性振荡,但施加静磁场和动磁场都未明显改变凝固界面的温度梯度和凝固速率。搭建了静磁场与交变磁场辅助激光增材制造实验装置。通过元素示踪实验和样品凝固组织表征分析,证实了通过改变磁场模式来调控熔池的熔体流动行为,能够用于激光增材制造合金的凝固组织定制。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-12
参考文献列表

[1] 汤海波, 吴宇, 张述泉, 等. 高性能大型金属构件激光增材制造技术研究现状与发展趋势[J]. 精密成形工程, 2019, 11(4): 58-63.
[2] 孙小峰, 荣婷, 黄洁, 等. 激光增材制造技术在航空制造领域的研究与应用进展[J]. 金属加工:热加工, 2021, 3: 7-14.
[3] 卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23.
[4] Tepylo N, Huang X, Patnaik P C. Laser based additive manufacturing technologies for aerospace applications[J]. Advanced Engineering Materials, 2019, 21(11): 1900617.
[5] Panwisawas C, Tang Y T, Reed R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nature Communications, 2020, 11(1): 2327.
[6] Gu D, Shi X, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): 1487.
[7] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components–process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
[8] Aucott L, Dong H, Mirihanage W, et al. Revealing internal flow behaviour in arc welding and additive manufacturing of metals[J]. Nature Communications, 2018, 9(1): 5414.
[9] Chen Y, Clark S J, Collins D M, et al. Correlative synchrotron X-ray imaging and diffraction of directed energy deposition additive manufacturing[J]. Acta Materialia, 2021, 209: 116777.
[10] Kok Y, Tan X P, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review[J]. Materials & Design, 2018, 139: 565-586.
[11] Gan Z, Kafka O L, Parab N, et al. Universal scaling laws of keyhole stability and porosity in 3D printing of metals[J]. Nature communications, 2021, 12(1): 2379.
[12] Snell R, Tammas W S, Chechik L, et al. Methods for rapid pore classification in metal additive manufacturing[J]. Jom, 2020, 72: 101-109.
[13] Du Plessis A, Sperling P, Beerlink A, et al. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis[J]. MethodsX, 2018, 5: 1336-1345.
[14] Thomas M, Baxter G J, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys[J]. Acta Materialia, 2016, 108: 26-35.
[15] Ghasemi-Tabasi H, Jhabvala J, Boillat E, et al. An effective rule for translating optimal selective laser melting processing parameters from one material to another[J]. Additive Manufacturing, 2020, 36: 101496.
[16] Khanzadeh M, Tian W, Yadollahi A, et al. Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams[J]. Additive Manufacturing, 2018, 23: 443-456.
[17] Dunbar A J, Nassar A R. Assessment of optical emission analysis for in-process monitoring of powder bed fusion additive manufacturing[J]. Virtual and Physical Prototyping, 2018, 13(1): 14-19.
[18] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690–2698.
[19] Haines M, Plotkowski A, Frederick C L, et al. A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing[J]. Computational Materials Science, 2018, 155: 340-349.
[20] Mohammadpour P, Plotkowski A, Phillion A B. Revisiting solidification microstructure selection maps in the frame of additive manufacturing[J]. Additive Manufacturing, 2020, 31: 100936.
[21] Gäumann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing–microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.
[22] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.
[23] Zhang D, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91-95.
[24] Nartu M S, Welk B A, Mantri S A, et al. Underlying factors determining grain morphologies in high-strength titanium alloys processed by additive manufacturing[J]. Nature Communications, 2023, 14(1): 3288.
[25] Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 2020, 11(1): 142.
[26] Zeng J, Chen W, Yang Y, et al. A review of permanent magnet stirring during metal solidification[J]. Metallurgical and Materials Transactions B, 2017, 48: 3083-3100.
[27] Xu B, Li B Q, Stock D E. An experimental study of thermally induced convection of molten gallium in magnetic fields[J]. International Journal of Heat and Mass Transfer, 2006, 49(13-14): 2009-2019.
[28] Zeng J, Chen W, Yan W, et al. Effect of permanent magnet stirring on solidification of Sn-Pb alloy[J]. Materials & Design, 2016, 108: 364-373.
[29] Yuan X, Zhou T, Ren W, et al. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy[J]. Journal of Materials Science & Technology, 2021, 62: 52-59.
[30] Bathula V, Liu C, Zweiacker K, et al. Interface velocity dependent solute trapping and phase selection during rapid solidification of laser melted hypo-eutectic Al-11at.% Cu alloy[J]. Acta Materialia, 2020, 195: 341-357.
[31] Zweiacker K W, Liu C, Gordillo M A, et al. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.% Cu alloys[J]. Acta Materialia, 2018, 145: 71-83.
[32] Soltani H, Reinhart G, Benoudia M C, et al. Impact of growth velocity on grain structure formation during directional solidification of a refined Al-20 wt.% Cu alloy[J]. Journal of Crystal Growth, 2020, 548: 125819.
[33] Tassa M, Hunt J D. The measurement of Al-Cu dendrite tip and eutectic interface temperatures and their use for predicting the extent of the eutectic range[J]. Journal of Crystal Growth, 1976, 34(1): 38-48.
[34] Wan H Y, Zhou Z J, Li C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting[J]. Journal of Materials Science & Technology, 2018, 34(10): 1799-1804.
[35] Tian Y, McAllister D, Colijn H, et al. Rationalization of microstructure heterogeneity in Inconel 718 builds made by the direct laser additive manufacturing process[J]. Metallurgical and Materials Transactions A, 2014, 45: 4470-4483.
[36] Xiao H, Li S, Han X, et al. Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing[J]. Materials & Design, 2017, 122: 330-339.
[37] Shao J, Yu G, Li S, et al. Crystal growth control of Ni-based alloys by modulation of the melt pool morphology in DED[J]. Journal of Alloys and Compounds, 2022, 898: 162976.
[38] Dinda G P, Dasgupta A K, Mazumder J. Texture control during laser deposition of nickel-based superalloy[J]. Scripta Materialia, 2012, 67(5): 503-506.
[39] Nadammal N, Cabeza S, Mishurova T, et al. Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718[J]. Materials & Design, 2017, 134: 139-150.
[40] Xu J, Lin X, Guo P, et al. The effect of preheating on microstructure and mechanical properties of laser solid forming In-738LC alloy[J]. Materials Science and Engineering: A, 2017, 691: 71-80.
[41] Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J]. Journal of Alloys and Compounds, 2014, 615: 338-347.
[42] Keshavarzkermani A, Sadowski M, Ladani L. Direct metal laser melting of Inconel 718: process impact on grain formation and orientation[J]. Journal of Alloys and Compounds, 2018, 736: 297-305.
[43] Attard B, Cruchley S, Beetz C, et al. Microstructural control during laser powder fusion to create graded microstructure Ni-superalloy components[J]. Additive Manufacturing, 2020, 36: 101432.
[44] Xu J, Lin X, Guo P, et al. The effect of preheating on microstructure and mechanical properties of laser solid forming IN-738LC alloy[J]. Materials Science and Engineering: A, 2017, 691: 71-80.
[45] Gokcekaya O, Ishimoto T, Hibino S, et al. Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy[J]. Acta Materialia, 2021, 212: 116876.
[46] Liu W, DuPont J N. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals: Mathematical modeling of single-crystal growth in a melt pool (part I)[J]. Acta Materialia, 2004, 52(16): 4833-4847.
[47] Liu W, DuPont J N. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (Part II)[J]. Acta materialia, 2005, 53(5): 1545-1558.
[48] Wang L, Wang N, Yao W J, et al. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys[J]. Acta Materialia, 2015, 88: 283-292.
[49] Wang L, Wang N. Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys: Experimental investigation[J]. Acta Materialia, 2016, 104: 250-258.
[50] Vitek J M. The effect of welding conditions on stray grain formation in single crystal welds–theoretical analysis[J]. Acta Materialia, 2005, 53(1): 53-67.
[51] Anderson T D, DuPont J N, DebRoy T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling[J]. Acta Materialia, 2010, 58(4): 1441-1454.
[52] Liu Z, Qi H. Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology, 2015, 216: 19-27.
[53] Liang Y J, Cheng X, Li J, et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: New processing–microstructure maps involving powder feeding[J]. Materials & Design, 2017, 130: 197-207.
[54] Ci S, Liang J, Li J, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing[J]. Journal of Alloys and Compounds, 2021, 854: 157180.
[55] Yang J, Li F, Pan A, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting[J]. Journal of Alloys and Compounds, 2019, 808: 151740
[56] Ramsperger M, Körner C. Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4®: From columnar grains to a single crystal[C]//Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016: 341-349.
[57] Chauvet E, Tassin C, Blandin J J, et al. Producing Ni-base superalloys single crystal by selective electron beam melting[J]. Scripta Materialia, 2018, 152: 15-19.
[58] Fernandez-Zelaia P, Kirka M M, Rossy A M, et al. Nickel-based superalloy single crystals fabricated via electron beam melting[J]. Acta Materialia, 2021, 216: 117133.
[59] Kou S. Welding metallurgy [M]. New York: Wiley, 2003:42-45.
[60] Tiller W A, Jackson K A, Rutter J W, et al. The redistribution of solute atoms during the solidification of metals[J]. Acta Metallurgica, 1953, 1(4): 428-437.
[61] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65(1): 75-83.
[62] Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification[J]. Materials Science and Engineering: A, 1997, 226: 763-769.
[63] Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica, 1986, 34(5): 823-830.
[64] Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2016, 12: 178-188.
[65] Guo C, Li Z, Huang Y, et al. Heterogeneous structures in a Ni-based superalloy with tailoring mechanical properties produced by a twin laser powder bed fusion system[J]. Journal of Alloys and Compounds, 2022, 927: 166983.
[66] Roehling T T, Wu S S Q, Khairallah S A, et al. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing[J]. Acta Materialia, 2017, 128: 197-206.
[67] Ho I T, Chang K C, Tiparti D, et al. Toward the understanding of CoAl2O4 additions on the formation of microstructure in alloy 718 processed by laser powder bed fusion[J]. Metallurgical and Materials Transactions A, 2023, 54(1): 23-38.
[68] Guo C, Yu Z, Hu X, et al. Y2O3 nanoparticles decorated IN738LC superalloy manufactured by laser powder bed fusion: cracking inhibition, microstructures and mechanical properties[J]. Composites Part B: Engineering, 2022, 230: 109555.
[69] Zhang Z, Han Q, Yang S, et al. Laser powder bed fusion of advanced submicrometer TiB2 reinforced high-performance Ni-based composite[J]. Materials Science and Engineering: A, 2021, 817: 141416.
[70] Xiong Z, Pang X, Liu S, et al. Hierarchical refinement of nickel-microalloyed titanium during additive manufacturing[J]. Scripta Materialia, 2021, 195: 113727.
[71] Sing S L, Huang S, Goh G D, et al. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion[J]. Progress in Materials Science, 2021, 119: 100795.
[72] Huang S, Narayan R L, Tan J H K, et al. Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via laser powder bed fusion[J]. Acta Materialia, 2021, 204: 116522.
[73] Bosio F, Manfredi D, Lombardi M. Homogenization of an Al alloy processed by laser powder bed fusion in-situ alloying[J]. Journal of Alloys and Compounds, 2022, 904: 164079.
[74] Bosio F, Fino P, Manfredi D, et al. Strengthening strategies for an Al alloy processed by in-situ alloying during laser powder bed fusion[J]. Materials & Design, 2021, 212: 110247.
[75] Martinez R, Todd I, Mumtaz K. In situ alloying of elemental Al-Cu12 feedstock using selective laser melting[J]. Virtual and Physical Prototyping, 2019, 14(3): 242-252.
[76] Großwendt F, Röttger A, Strauch A, et al. Additive manufacturing of a carbon-martensitic hot-work tool steel using a powder mixture–Microstructure, post-processing, mechanical properties[J]. Materials Science and Engineering: A, 2021, 827: 142038.
[77] Lin D, Xu L, Li X, et al. A Si-containing FeCoCrNi high-entropy alloy with high strength and ductility synthesized in situ via selective laser melting[J]. Additive Manufacturing, 2020, 35: 101340.
[78] Chen P, Li S, Zhou Y, et al. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying[J]. Journal of Materials Science & Technology, 2020, 43: 40-43.
[79] Skelton J M, Sullivan E J, Fitz-Gerald J M, et al. Efficacy of elemental mixing of in situ alloyed Al-33wt% Cu during laser powder bed fusion[J]. Journal of Materials Processing Technology, 2022, 299: 117379.
[80] Simonelli M, Aboulkhair N T, Cohen P, et al. A comparison of Ti-6Al-4V in-situ alloying in selective laser melting using simply-mixed and satellited powder blend feedstocks[J]. Materials Characterization, 2018, 143: 118-126.
[81] Chen P, Yao X, Attallah M M, et al. In-situ alloyed cocrfemnni high entropy alloy: microstructural development in laser powder bed fusion[J]. Journal of Materials Science & Technology, 2022, 123: 123–135.
[82] Wang J, Wang Y, Su Y, et al. Evaluation of in-situ alloyed Inconel 625 from elemental powders by laser directed energy deposition[J]. Materials Science and Engineering: A, 2022, 830: 142296.
[83] Wang G, Liang J, Zhou Y, et al. Variation of crystal orientation during epitaxial growth of dendrites by laser deposition[J]. Journal of Materials Science & Technology, 2018, 34(4): 732-735.
[84] Sabzi M, Dezfuli S M. Drastic improvement in mechanical properties and weldability of 316L stainless steel weld joints by using electromagnetic vibration during GTAW process[J]. Journal of Manufacturing Processes, 2018, 33: 74-85.
[85] Cong W, Ning F. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel[J]. International Journal of Machine Tools and Manufacture, 2017, 121: 61-69.
[86] Misra A K. A novel solidification technique of metals and alloys: under the influence of applied potential[J]. Metallurgical Transactions A, 1985, 16: 1354-1355.
[87] 何树先, 王俊, 周尧和. 电流在金属凝固过程中的应用[J]. 特种铸造及有色合金, 2001, 1001–2249(5): 28–31.
[88] Zhang L, Wang S, Dong A, et al. Application of electromagnetic (EM) separation technology to metal refining processes: a review[J]. Metallurgical and Materials Transactions B, 2014, 45: 2153-2185.
[89] Du D, Haley J C, Dong A, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy[J]. Materials & Design, 2019, 181: 107923.
[90] Wang Y, Shi J. Texture control of Inconel 718 superalloy in laser additive manufacturing by an external magnetic field[J]. Journal of Materials Science, 2019, 54: 9809-9823.
[91] 杜大帆, 董安平, 祝国梁, 等. 静磁场辅助金属增材制造技术研究进展[J]. 中国材料进展, 2022, 12: 1–13.
[92] Liu F, Cheng H, Yu X, et al. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring[J]. Optics & Laser Technology, 2018, 99: 342-350.
[93] Wolff S J, Wu H, Parab N, et al. In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing[J]. Scientific Reports, 2019, 9(1): 962.
[94] Guo Q, Zhao C, Qu M, et al. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing[J]. Additive Manufacturing, 2020, 31: 100939.
[95] Griffith M L, Schlienger M E, Harwell L D, et al. Understanding thermal behavior in the LENS process[J]. Materials & Design, 1999, 20(2-3): 107-113.
[96] Doubenskaia M, Bertrand P, Smurov I. Pyrometry in laser surface treatment[J]. Surface and Coatings Technology, 2006, 201(5): 1955-1961.
[97] Liu Z, Li T, Ning F, et al. Effects of deposition variables on molten pool temperature during laser engineered net shaping of Inconel 718 superalloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 969-976.
[98] Rosenthal D. The theory of moving sources of heat and its application to metal treatments[J]. Transactions of the American Society of Mechanical Engineers, 1946, 68(8): 849-865.
[99] Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[100] Brent A D, Voller V R, Reid K T J. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal[J]. Numerical Heat Transfer: Part A Applications, 1988, 13(3): 297-318.
[101] Manvatkar V, De A, DebRoy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. Journal of Applied Physics, 2014, 116(12): 124905.
[102] Kumar A, Roy S. Effect of three-dimensional melt pool convection on process characteristics during laser cladding[J]. Computational Materials Science, 2009, 46(2): 495-506.
[103] Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108: 36-45.
[104] Gan Z, Liu H, Li S, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111: 709-722.
[105] Bayat M, Thanki A, Mohanty S, et al. Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation[J]. Additive Manufacturing, 2019, 30: 100835.
[106] DebRoy T, Mukherjee T, Wei H L, et al. Metallurgy, mechanistic models and machine learning in metal printing[J]. Nature Reviews Materials, 2021, 6(1): 48-68.
[107] Wei H L, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components[J]. Progress in Materials Science, 2021, 116: 100703.
[108] Wang L, Zhang Y, Yan W. Evaporation model for keyhole dynamics during additive manufacturing of metal[J]. Physical Review Applied, 2020, 14(6): 064039.
[109] Yuan W, Chen H, Cheng T, et al. Effects of laser scanning speeds on different states of the molten pool during selective laser melting: simulation and experiment[J]. Materials & Design, 2020, 189: 108542.
[110] Chen H, Yan W. Spattering and denudation in laser powder bed fusion process: Multiphase flow modelling[J]. Acta Materialia, 2020, 196: 154-167.
[111] Sun Z, Chueh Y H, Li L. Multiphase mesoscopic simulation of multiple and functionally gradient materials laser powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2020, 35: 101448.
[112] Ge H, Xu H, Wang J, et al. Investigation on composition distribution of dissimilar laser cladding process using a three-phase model[J]. International Journal of Heat and Mass Transfer, 2021, 170: 120975.
[113] Gan Z, Yu G, He X, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer, 2017, 104: 28-38.
[114] Huang W, Wang H, Rinker T, et al. Investigation of metal mixing in laser keyhole welding of dissimilar metals[J]. Materials & Design, 2020, 195: 109056.
[115] Shinjo J, Panwisawas C. Digital materials design by thermal-fluid science for multi-metal additive manufacturing[J]. Acta Materialia, 2021, 210: 116825.
[116] Cai B, Kao A, Boller E, et al. Revealing the mechanisms by which magneto-hydrodynamics disrupts solidification microstructures[J]. Acta Materialia, 2020, 196: 200-209.
[117] Huang L, Liu P, Zhu S, et al. Experimental research on formation mechanism of porosity in magnetic field assisted laser welding of steel[J]. Journal of Manufacturing Processes, 2020, 50: 596-602.
[118] Meng X, Artinov A, Bachmann M, et al. Numerical and experimental investigation of thermo-fluid flow and element transport in electromagnetic stirring enhanced wire feed laser beam welding[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118663.
[119] Bachmann M, Avilov V, Gumenyuk A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24-34.
[120] Wang H, Jia Y, Le Q, et al. Transient numerical simulation of solidification characteristic under differential phase pulsed magnetic field[J]. Computational Materials Science, 2020, 172: 109261.
[121] Li X, Lu Z, Fautrelle Y, et al. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys[J]. Scientific Reports, 2016, 6(1): 1-15.
[122] Wang L, Yan W. Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing[J]. Physical Review Applied, 2021, 15(6): 064051.
[123] Ge H, Fang H, Zhang C, et al. The evolution of element distribution during laser cladding under static magnetic field[J]. Metallurgical and Materials Transactions A, 2022, 53(2): 370-376.
[124] Tseng C C, Li C J. Numerical investigation of interfacial dynamics for the melt pool of Ti-6Al-4V powders under a selective laser[J]. International Journal of Heat and Mass Transfer, 2019, 134: 906-919.
[125] Sun Z, Guo W, Li L. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process[J]. Additive Manufacturing, 2020, 33: 101175.
[126] Wolff S J, Gan Z, Lin S, et al. Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel[J]. Additive Manufacturing, 2019, 27: 540-551.
[127] Haley J C, Schoenung J M, Lavernia E J. Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing[J]. Materials Science and Engineering: A, 2019, 761: 138052.
[128] Hann D B, Iammi J, Folkes J. A simple methodology for predicting laser-weld properties from material and laser parameters[J]. Journal of Physics D: Applied Physics, 2011, 44(44): 445401.
[129] Mills K C. Recommended values of thermophysical properties for selected commercial alloys[M]. Sawston:Woodhead Publishing, 2002:1-244.
[130] Quested P N, Brooks R F, Chapman L, et al. Measurement and estimation of thermophysical properties of nickel based superalloys[J]. Materials Science and Technology, 2009, 25(2): 154-162.
[131] Kurz W, Fisher D J. Dendrite growth at the limit of stability: Tip radius and spacing[J]. Acta Metallurgica, 1981, 29(1): 11-20.
[132] Burden M H, Hunt J D. Cellular and dendritic growth. I[J]. Journal of Crystal Growth, 1974, 22(2): 99-108.
[133] Quested P N, McLean M. Solidification morphologies in directionally solidified superalloys[J]. Materials Science and Engineering, 1984, 65(1): 171-180.
[134] McCartney D G, Hunt J D. Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys[J]. Acta Metallurgica, 1981, 29(11): 1851-1863.
[135] Hunt J D, Lu S Z. Numerical modeling of cellular/dendritic array growth: spacing and structure predictions[J]. Metallurgical and Materials Transactions A, 1996, 27: 611-623.
[136] Whitesell H S, Li L, Overfelt R A. Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys[J]. Metallurgical and Materials Transactions B, 2000, 31: 546-551.
[137] Vijayakumar M, Tewari S N, Lee J E, et al. Dendrite spacings in directionally solidified superalloy PWA-1480[J]. Materials Science and Engineering: A, 1991, 132: 195-201.
[138] Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification[J]. Materials Science and Engineering: A, 1997, 226: 763-769.
[139] Aziz M J. Model for solute redistribution during rapid solidification[J]. Journal of Applied Physics, 1982, 53(2): 1158-1168.
[140] Aziz M J, Kaplan T. Continuous growth model for interface motion during alloy solidification[J]. Acta Metallurgica, 1988, 36(8): 2335-2347.
[141] Trivedi R, Kurz W. Dendritic growth[J]. International Materials Reviews, 1994, 39(2): 49-74.
[142] Kurz W, D J Fisher. Fundamentals of solidification[M]. Switzerland:Trans Tech Publications Ltd, 1989:53-75.
[143] Nastac L, Valencia J J, Tims M L, et al. Advances in the Solidification of IN718 and RS5 Alloys[J]. Superalloys, 2001, 718: 625-706.
[144] Nie J, Chen C, Liu L, et al. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition[J]. Journal of Materials Science & Technology, 2021, 62: 148-161.
[145] Liu Z, Wang Z. Effect of substrate preset temperature on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Science & Technology, 2018, 34(11): 2116-2124.
[146] Wang Y, Choi J, Mazumder J. Laser-aided direct writing of nickel-based single-crystal super alloy (N5)[J]. Metallurgical and Materials Transactions A, 2016, 47: 5685-5690.
[147] Sendino S, Martinez S, Ukar E, et al. Monitoring of the L-PBF process to analyze the effect of powder bed temperature on parts roughness[J]. Procedia CIRP, 2022, 111: 355-358.
[148] Welk B A, Taylor N, Kloenne Z, et al. Use of alloying to effect an equiaxed microstructure in additive manufacturing and subsequent heat treatment of high-strength titanium alloys[J]. Metallurgical and Materials Transactions A, 2021, 52: 5367-5380.
[149] Založnik M, Combeau H. Thermosolutal flow in steel ingots and the formation of mesosegregates[J]. International Journal of Thermal Sciences, 2010, 49(9): 1500-1509.
[150] Kumar A, Založnik M, Combeau H, et al. Channel segregation during columnar solidification: Relation between mushy zone instability and mush permeability[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120602.
[151] Jain J , Kumar A , Dutta P . Numerical studies on channel formation and growth during solidification: effect of process parameters[J]. Journal of Heat Transfer, 2007, 129(4) :548–558.
[152] Noeppel A, Ciobanas A, Wang X D, et al. Influence of forced/natural convection on segregation during the directional solidification of Al-based binary alloys[J]. Metallurgical and Materials Transactions B, 2010, 41: 193-208.
[153] Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016, 115: 285-294.
[154] Harrison N J, I Todd, & K Mumtaz. Reduction of Micro-Cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach[J]. Acta Materialia, 2015, 94: 59–68.
[155] Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach[J]. Acta Materialia, 2015, 94: 59-68.
[155] Lefebvre W, Rose G, Delroisse P, et al. Nanoscale periodic gradients generated by laser powder bed fusion of an AlSi10Mg alloy[J]. Materials & Design, 2021, 197: 109264.
[156] Chen S, Zhao Y, Tian S, et al. Study on keyhole coupling and melt flow dynamic behaviors simulation of 2219 aluminum alloy T-joint during the dual laser beam bilateral synchronous welding[J]. Journal of Manufacturing Processes, 2020, 60: 200-212.
[157] Wang P, Deng L, Prashanth K G, et al. Microstructure and mechanical properties of Al-Cu alloys fabricated by selective laser melting of powder mixtures[J]. Journal of Alloys and Compounds, 2018, 735: 2263-2266.
[158] Pottlacher G, Hosaeus H, Kaschnitz E, et al. Thermophysical properties of solid and liquid Inconel 718 alloy[J]. Scandinavian Journal of Metallurgy, 2002, 31(3): 161-168.

所在学位评定分委会
机械
国内图书分类号
TG113.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/677929
专题南方科技大学
工学院
工学院_机械与能源工程系
推荐引用方式
GB/T 7714
周阳. 金属激光增材制造熔池传热流动行为与凝固组织研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849605-周阳-机械与能源工程系(36796KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周阳]的文章
百度学术
百度学术中相似的文章
[周阳]的文章
必应学术
必应学术中相似的文章
[周阳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。