中文版 | English
题名

Microstructure Studies of Zinc Electrodeposits in Zinc Metal Batteries

姓名
姓名拼音
YI Zhibin
学号
11951013
学位类型
博士
学位专业
机械工程
导师
罗光富
导师单位
材料科学与工程系
外机构导师
陈擎
外机构导师单位
机械及航空航天工程学系
论文答辩日期
2023-12-14
论文提交日期
2024-01-29
学位授予单位
香港科技大学
学位授予地点
香港
摘要

Rechargeable zinc batteries offer a safe and inexpensive alternative to lithium-ion batteries. However, their efficiency and lifespan are limited by hydrogen evolution and rough zinc deposition during the charging process. Yet there is a lack of fundamental understanding regarding the development of rough zinc morphologies and their impacts on hydrogen evolution. This thesis combines experimental and theoretical approaches to address these issues in both alkaline and near-neutral zinc batteries. We establish relationships between zinc deposition morphologies and factors such as electrolyte composition and current densities. Our findings reveal that mossy zinc can form under low current density conditions, exacerbating hydrogen evolution, reducing current efficiency, and resulting in premature battery failures. Utilizing microscopy and X-ray diffraction, we elucidate the formation mechanism of mossy zinc, which involves root growth for stress relief at defect sites. To mitigate the adverse effects of mossy deposition on the battery performance, over-charging and additive-based strategies are developed. The insights gained from this thesis will pave the way for zinc batteries to better serve applications such as portable electronics and grid-scale energy storage

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-03
参考文献列表

1. Chen, L.; Msigwa, G.; Yang, M.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P.-S., Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20 (4), 2277-2310.2. Hannan, M. A.; Hoque, M. M.; Mohamed, A.; Ayob, A., Review of energy storage systems for electric vehicle applications: Issues and challenges. Renewable Sustainable Energy Rev. 2017, 69, 771-789.3. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical energy storage for the grid: A battery of choices. Science 2011, 334 (6058), 928-935.4. Xin-gang, Z.; Yi-min, X., The economic performance of industrial and commercial rooftop photovoltaic in China. Energy 2019, 187, 115961.5. Liu, J.; Xu, C.; Chen, Z.; Ni, S.; Shen, Z. X., Progress in aqueous rechargeable batteries. Green Energy Environ. 2018, 3 (1), 20-41.6. Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R., Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356 (6336), 415-418.7. Li, C.; Wang, L.; Zhang, J.; Zhang, D.; Du, J.; Yao, Y.; Hong, G., Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Mater. 2022, 44, 104-135.8. Naveed, A.; Rasheed, T.; Raza, B.; Chen, J.; Yang, J.; Yanna, N.; Wang, J., Addressing thermodynamic Instability of Zn anode: Classical and recent advancements. Energy Storage Mater. 2022, 44, 206-230.9. Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z., Electrically rechargeable zinc–air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29 (7), 1604685.10. Naybour, R. D., Morphologies of zinc electrodeposited from zinc-saturated aqueous alkaline solution. Electrochim. Acta 1968, 13 (4), 763-769.11. Wang, R. Y.; Kirk, D. W.; Zhang, G. X., Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions. J. Electrochem. Soc. 2006, 153 (5), C357.12. Wang, R. Y.; Kirk, D. W.; Zhang, G. X., Characterization and growth mechanism of filamentous zinc electrodeposits. ECS Trans. 2007, 2 (16), 19.13. Zheng, J.; Archer Lynden, A., Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems. Sci. Adv. 7 (2), eabe0219.14. Sasaki, Y.; Yoshida, K.; Kawasaki, T.; Kuwabara, A.; Ukyo, Y.; Ikuhara, Y., In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J. Power Sources 2021, 481, 228831.15. Libbrecht, K. G., The physics of snow crystals. Rep. Prog. Phys. 2005, 68 (4), 855.16. Lee, B.-S.; Cui, S.; Xing, X.; Liu, H.; Yue, X.; Petrova, V.; Lim, H.-D.; Chen, R.; Liu, P., Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 2018, 10 (45), 38928-38935.17. Lee, H.-J.; Lim, J.-M.; Kim, H.-W.; Jeong, S.-H.; Eom, S.-W.; Hong, Young T.; Lee, S.-Y., Electrospun polyetherimide nanofiber mat-reinforced, permselective polyvinyl alcohol composite separator membranes: A membrane-driven step closer toward rechargeable zinc–air batteries. J. Membr. Sci. 2016, 499, 526-537.18. Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138 (39), 12894-12901.19. Yang, Y.; Yang, H.; Zhu, R.; Zhou, H., High reversibility at high current density: the zinc electrodeposition principle behind the “trick”. Energy Environ. Sci. 2023, 16 (7), 2723-2731.20. Pu, S. D.; Gong, C.; Tang, Y. T.; Ning, Z.; Liu, J.; Zhang, S.; Yuan, Y.; Melvin, D.; Yang, S.; Pi, L.; Marie, J.-J.; Hu, B.; Jenkins, M.; Li, Z.; Liu, B.; Tsang, S. C. E.; Marrow, T. J.; Reed, R. C.; Gao, X.; Bruce, P. G.; Robertson, A. W., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 2022, 34 (28), 2202552.21. Zheng, J.; Zhao, Q.; Tang, T.; Yin, J.; Quilty, C. D.; Renderos, G. D.; Liu, X.; Deng, Y.; Wang, L.; Bock, D. C.; Jaye, C.; Zhang, D.; Takeuchi, E. S.; Takeuchi, K. J.; Marschilok, A. C.; Archer, L. A., Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366 (6465), 645-648.22. Foroozan, T.; Yurkiv, V.; Sharifi-Asl, S.; Rojaee, R.; Mashayek, F.; Shahbazian-Yassar, R., Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 2019, 11 (47), 44077-44089.23. Wang, C.; Zhu, G.; Liu, P.; Chen, Q., Monolithic nanoporous Zn anode for rechargeable alkaline batteries. ACS Nano 2020, 14 (2), 2404-2411.24. Wu, Y.; Zhang, Y.; Ma, Y.; Howe, J. D.; Yang, H.; Chen, P.; Aluri, S.; Liu, N., Ion-sieving carbon nanoshells for deeply rechargeable Zn-based aqueous batteries. Adv. Energy Mater. 2018, 8 (36), 1802470.25. Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018, 8 (25), 1801090.26. Cao, L.; Li, D.; Hu, E.; Xu, J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X.-Q.; Wang, C., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142 (51), 21404-21409.27. Qin, R.; Wang, Y.; Zhang, M.; Wang, Y.; Ding, S.; Song, A.; Yi, H.; Yang, L.; Song, Y.; Cui, Y.; Liu, J.; Wang, Z.; Li, S.; Zhao, Q.; Pan, F., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 2021, 80, 105478.28. Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17 (6), 543-549.29. Zhang, C.; Holoubek, J.; Wu, X.; Daniyar, A.; Zhu, L.; Chen, C.; Leonard, D. P.; Rodríguez-Pérez, I. A.; Jiang, J.-X.; Fang, C.; Ji, X., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 2018, 54 (100), 14097-14099.30. Zhang, Y.; Yang, G.; Lehmann, M. L.; Wu, C.; Zhao, L.; Saito, T.; Liang, Y.; Nanda, J.; Yao, Y., Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 2021, 21 (24), 10446-10452.31. Higashi, S.; Lee, S. W.; Lee, J. S.; Takechi, K.; Cui, Y., Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 2016, 7 (1), 11801.32. Li, Q.; Chen, A.; Wang, D.; Zhao, Y.; Wang, X.; Jin, X.; Xiong, B.; Zhi, C., Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 2022, 13 (1), 3699.33. Arnot, D. J.; Lim, M. B.; Bell, N. S.; Schorr, N. B.; Hill, R. C.; Meyer, A.; Cheng, Y.-T.; Lambert, T. N., High depth-of-discharge zinc rechargeability enabled by a self-assembled polymeric coating. Adv. Energy Mater. 2021, 11 (38), 2101594.34. Xie, C.; Liu, S.; Yang, Z.; Ji, H.; Zhou, S.; Wu, H.; Hu, C.; Tang, Y.; Ji, X.; Zhang, Q.; Wang, H., Discovering the intrinsic causes of dendrite formation in zinc metal anodes: lattice defects and residual stress. Angew. Chem. Int. Ed. 2023, 62 (16), e202218612.35. Chen, S.; Wang, T.; Ma, L.; Zhou, B.; Wu, J.; Zhu, D.; Li, Y. Y.; Fan, J.; Zhi, C., Aqueous rechargeable zinc air batteries operated at −110°C. Chem 2023, 9 (2), 497-510.36. Jin, S.; Chen, P.-Y.; Qiu, Y.; Zhang, Z.; Hong, S.; Joo, Y. L.; Yang, R.; Archer, L. A., Zwitterionic polymer gradient interphases for reversible zinc electrochemistry in aqueous alkaline electrolytes. J. Am. Chem. Soc. 2022, 144 (42), 19344-19352.37. Liu, J.-N.; Zhao, C.-X.; Wang, J.; Ren, D.; Li, B.-Q.; Zhang, Q., A brief history of zinc–air batteries: 140 years of epic adventures. Energy Environ. Sci. 2022, 15 (11), 4542-4553.38. Yuan, Z.; Yin, Y.; Xie, C.; Zhang, H.; Yao, Y.; Li, X., Advanced materials for zinc-based flow battery: Development and challenge. Adv. Mater. 2019, 31 (50), 1902025.39. Ito, Y.; Nyce, M.; Plivelich, R.; Klein, M.; Steingart, D.; Banerjee, S., Zinc morphology in zinc–nickel flow assisted batteries and impact on performance. J. Power Sources 2011, 196 (4), 2340-2345.40. Shinde, S. S.; Jung, J. Y.; Wagh, N. K.; Lee, C. H.; Kim, D.-H.; Kim, S.-H.; Lee, S. U.; Lee, J.-H., Ampere-hour-scale zinc–air pouch cells. Nat. Energy 2021, 6 (6), 592-604.41. Luo, F.; Zhu, J.; Ma, S.; Li, M.; Xu, R.; Zhang, Q.; Yang, Z.; Qu, K.; Cai, W.; Chen, Z., Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries. Energy Storage Mater. 2021, 35, 723-730.42. Zhang, W.; Chang, J.; Wang, G.; Li, Z.; Wang, M.; Zhu, Y.; Li, B.; Zhou, H.; Wang, G.; Gu, M.; Feng, Z.; Yang, Y., Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc–air batteries. Energy Environ. Sci. 2022, 15 (4), 1573-1584.43. Wang, R.; Yang, H.; Lu, N.; Lei, S.; Jia, D.; Wang, Z.; Liu, Z.; Wu, X.; Zheng, H.; Ali, S.; Ma, F.; Peng, S., Precise identification of active sites of a high bifunctional performance 3D Co/N-C catalyst in zinc-air batteries. Chem. Eng. J. 2022, 433, 134500.44. Tang, K.; Hu, H.; Xiong, Y.; Chen, L.; Zhang, J.; Yuan, C.; Wu, M., Hydrophobization engineering of the air–cathode catalyst for improved oxygen diffusion towards efficient zinc–air batteries. Angew. Chem. Int. Ed. 2022, 61 (24), e202202671.45. Desai, D.; Wei, X.; Steingart, D. A.; Banerjee, S., Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries. J. Power Sources 2014, 256, 145-152.46. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.47. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904.48. Müller, S.; Holzer, F.; Haas, O., Optimized zinc electrode for the rechargeable zinc–air battery. J. Appl. Electrochem. 1998, 28 (9), 895-898.49. Kim, H.-W.; Lim, J.-M.; Lee, H.-J.; Eom, S.-W.; Hong, Y. T.; Lee, S.-Y., Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes. J. Mater. Chem. A 2016, 4 (10), 3711-3720.50. Lee, D. U.; Park, H. W.; Park, M. G.; Ismayilov, V.; Chen, Z., Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc–air battery applications. ACS Appl. Mater. Interfaces 2015, 7 (1), 902-910.51. Meng, F.; Zhong, H.; Bao, D.; Yan, J.; Zhang, X., In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 2016, 138 (32), 10226-10231.52. Qian, Y.; Hu, Z.; Ge, X.; Yang, S.; Peng, Y.; Kang, Z.; Liu, Z.; Lee, J. Y.; Zhao, D., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 2017, 111, 641-650.53. You, T.-H.; Hu, C.-C., Designing binary Ru–Sn oxides with optimized performances for the air electrode of rechargeable zinc–air batteries. ACS Appl. Mater. Interfaces 2018, 10 (12), 10064-10075.54. Chen, B.; He, X.; Yin, F.; Wang, H.; Liu, D.-J.; Shi, R.; Chen, J.; Yin, H., MO-Co@N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–air battery. Adv. Funct. Mater. 2017, 27 (37), 1700795.55. Wei, L.; Karahan, H. E.; Zhai, S.; Liu, H.; Chen, X.; Zhou, Z.; Lei, Y.; Liu, Z.; Chen, Y., Amorphous bimetallic oxide–graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Adv. Mater. 2017, 29 (38), 1701410.56. Fu, G.; Wang, J.; Chen, Y.; Liu, Y.; Tang, Y.; Goodenough, J. B.; Lee, J.-M., Exploring indium-based ternary thiospinel as conceivable high-potential air-cathode for rechargeable Zn–air batteries. Adv. Energy Mater. 2018, 8 (31), 1802263.57. Ma, H.; Wang, B.; Fan, Y.; Hong, W., Development and Characterization of an Electrically Rechargeable zinc-Air Battery Stack. Energies 2014, 7 (10), 6549-6557.58. Zhang, Z.; Zhou, D.; Li, Z.; Zhou, L.; Huang, B., Preparation and properties of a ZnO/PVA/β-CD composite electrode for rechargeable zinc anodes. ChemistrySelect 2018, 3 (38), 10677-10683.59. Bockris, J. O. M.; Nagy, Z.; Drazic, D., On the morphology of zinc electrodeposition from alkaline solutions. J. Electrochem. Soc. 1973, 120 (1), 30.60. Vishnugopi, B. S.; Hao, F.; Verma, A.; Mukherjee, P. P., Surface diffusion manifestation in electrodeposition of metal anodes. Phys. Chem. Chem. Phys. 2020, 22 (20), 11286-11295.61. Burton, W. K.; Cabrera, N.; Frank, F. C., Role of dislocations in crystal growth. Nature 1949, 163 (4141), 398-399.62. Burton, W. K.; Cabrera, N.; Frank, F. C.; Mott, N. F., The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. A 1997, 243 (866), 299-358.63. Lau, Y. K. A.; Chernak, D. J.; Bierman, M. J.; Jin, S., Formation of PbS nanowire pine trees driven by screw dislocations. J. Am. Chem. Soc. 2009, 131 (45), 16461-16471.64. Morin, S. A.; Bierman, M. J.; Tong, J.; Jin, S., Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 2010, 328 (5977), 476-480.65. Meng, F.; Estruga, M.; Forticaux, A.; Morin, S. A.; Wu, Q.; Hu, Z.; Jin, S., Formation of stacking faults and the screw dislocation-driven growth: A case study of aluminum nitride nanowires. ACS Nano 2013, 7 (12), 11369-11378.66. Meng, F.; Jin, S., The Solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett. 2012, 12 (1), 234-239.67. Berghezan, A.; Fourdeux, A.; Amelinckx, S., Transmission electron microscopy studies of dislocations and stacking faults in a hexagonal metal: Zinc. Acta Metall. 1961, 9 (5), 464-490.68. He, P.; Huang, J., Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 2021, 6 (5), 1990-1995.69. Zhang, Z.; Said, S.; Smith, K.; Zhang, Y. S.; He, G.; Jervis, R.; Shearing, P. R.; Miller, T. S.; Brett, D. J. L., Dendrite suppression by anode polishing in zinc-ion batteries. J. Mater. Chem. A 2021, 9 (27), 15355-15362.70. Qian, G.; Zan, G.; Li, J.; Lee, S.-J.; Wang, Y.; Zhu, Y.; Gul, S.; Vine, D. J.; Lewis, S.; Yun, W.; Ma, Z.-F.; Pianetta, P.; Lee, J.-S.; Li, L.; Liu, Y., Structural, dynamic, and chemical complexities in zinc anode of an operating aqueous Zn-ion battery. Adv. Energy Mater. 2022, 12 (21), 2200255.71. Kuroda, T.; Irisawa, T.; Ookawa, A., Growth of a polyhedral crystal from solution and its morphological stability. J. Cryst. Growth 1977, 42, 41-46.72. López, C. M.; Choi, K.-S., Electrochemical synthesis of dendritic zinc films composed of systematically varying motif crystals. Langmuir 2006, 22 (25), 10625-10629.73. Dirkse, T. P., Aqueous potassium hydroxide as electrolyte for the zinc electrode. J. Electrochem. Soc. 1987, 134 (1), 11-13.74. Luo, Y.; Tang, L.; Khan, U.; Yu, Q.; Cheng, H.-M.; Zou, X.; Liu, B., Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10 (1), 269.75. Luo, Y.; Zhang, Z.; Yang, F.; Li, J.; Liu, Z.; Ren, W.; Zhang, S.; Liu, B., Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 2021, 14 (8), 4610-4619.76. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135 (45), 16977-16987.77. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135 (28), 10274-10277.78. Guo, M.; Li, X.; Huang, Y.; Li, L.; Li, J.; Lu, Y.; Xu, Y.; Zhang, L., CO2-induced fibrous Zn catalyst promotes electrochemical reduction of CO2 to CO. Catalysts 2021, 11 (4), 477.79. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7 (7), 2255-2260.80. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas Arvydas, P.; Stamenkovic, V.; Markovic Nenad, M., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334 (6060), 1256-1260.81. Wang, P.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S.; Lu, G.; Yao, J.; Huang, X., Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8 (1), 14580.82. Jäckle, M.; Helmbrecht, K.; Smits, M.; Stottmeister, D.; Groß, A., Self-diffusion barriers: Possible descriptors for dendrite growth in batteries? Energy Environ. Sci. 2018, 11 (12), 3400-3407.83. Cui, Y.-f.; Cao, R.-f.; Du, J.-y.; Zhuang, Z.-b.; Xie, Z.-l.; Wang, Q.-s.; Bao, D.; Liu, W.-q.; Zhu, Y.-h.; Huang, G., A dendrite-free and anticaustic Zn anode enabled by high current-induced reconstruction of the electrical double layer. Chem. Commun. 2023, 59 (17), 2437-2440.84. Li, C.; Jin, S.; Archer, L. A.; Nazar, L. F., Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 2022, 6 (8), 1733-1738.85. Moezzi, A.; Cortie, M. B.; McDonagh, A. M., Zinc hydroxide sulphate and its transformation to crystalline zinc oxide. Dalton Trans. 2013, 42 (40), 14432-14437.86. Beverskog, B.; Puigdomenech, I., Revised pourbaix diagrams for zinc at 25–300 °C. Corros. Sci. 1997, 39 (1), 107-114.87. Ma, L.; Schroeder, M. A.; Pollard, T. P.; Borodin, O.; Ding, M. S.; Sun, R.; Cao, L.; Ho, J.; Baker, D. R.; Wang, C.; Xu, K., Critical factors dictating reversibility of the zinc metal anode. Energy Environ. Mater. 2020, 3 (4), 516-521.88. Xiao, P.; Li, H.; Fu, J.; Zeng, C.; Zhao, Y.; Zhai, T.; Li, H., An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 2022, 15 (4), 1638-1646.89. Wu, G.; Yang, Y.; Zhu, R.; Yang, W.; Yang, H.; Zhou, H., The pitfalls of using stainless steel (SS) coin cells in aqueous zinc battery research. Energy Environ. Sci. 2023, 16 (10), 4320-4325.90. Lim, W.-G.; Li, X.; Reed, D., Understanding the role of zinc hydroxide sulfate and its analogues in mildly acidic aqueous zinc batteries: A review. Small Methods 2023, 2300965, https://doi.org/10.1002/smtd.202300965.91. Liu, B.; Yuan, X.; Li, Y., Colossal capacity loss during calendar aging of Zn battery chemistries. ACS Energy Lett. 2023, 8 (9), 3820-3828.92. Cachet, C.; Saïdani, B.; Wiart, R., The kinetics of zinc deposition at low overpotentials in alkaline electrolytes. Electrochim. Acta 1988, 33 (3), 405-416.93. Goff, A. H.-L.; Joiret, S.; Saïdani, B.; Wiart, R., In-situ Raman spectroscopy applied to the study of the deposition and passivation of zinc in alkaline electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 1989, 263 (1), 127-135.94. Otani, T.; Nagata, M.; Fukunaka, Y.; Homma, T., Morphological evolution of mossy structures during the electrodeposition of zinc from an alkaline zincate solution. Electrochim. Acta 2016, 206, 366-373.95. Zheng, J. X. K.; Yin, J.; Tang, T.; Archer, L. A., Moss-like growth of metal electrodes: On the role of competing faradaic reactions and fast charging. ACS Energy Lett. 2023, 8 (5), 2113-2121.96. Zhang, J.; Huang, W.; Li, L.; Chang, C.; Yang, K.; Gao, L.; Pu, X., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 2023, 35 (21), 2300073.97. Onabuta, Y.; Kunimoto, M.; Wang, S.; Fukunaka, Y.; Nakai, H.; Homma, T., Multiscale simulation of irregular shape evolution during the initial stage of Zn electrodeposition on a negative electrode surface. J. Phys. Chem. C. 2022, 126 (11), 5224-5232.98. Onabuta, Y.; Kunimoto, M.; Wang, S.; Fukunaka, Y.; Nakai, H.; Homma, T., Effect of Li+ addition during initial stage of electrodeposition process on nucleation and growth of Zn. J. Electrochem. Soc. 2022, 169 (9), 092504.99. Xiang, S. K.; Huang, H., Ab initio determination of Ehrlich–Schwoebel barriers on Cu{111}. Appl. Phys. Lett. 2008, 92 (10), 101923.100. Vrijmoeth, J.; van der Vegt, H. A.; Meyer, J. A.; Vlieg, E.; Behm, R. J., Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origins and side effects. Phys. Rev. Lett. 1994, 72 (24), 3843-3846.101. Chason, E.; Jadhav, N.; Pei, F.; Buchovecky, E.; Bower, A., Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms. Prog. Surf. Sci. 2013, 88 (2), 103-131.102. Wang, X.; Zeng, W.; Hong, L.; Xu, W.; Yang, H.; Wang, F.; Duan, H.; Tang, M.; Jiang, H., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 2018, 3 (3), 227-235.103. Hektor, J.; Marijon, J.-B.; Ristinmaa, M.; Hall, S. A.; Hallberg, H.; Iyengar, S.; Micha, J.-S.; Robach, O.; Grennerat, F.; Castelnau, O., Evidence of 3D strain gradients associated with tin whisker growth. Scr. Mater. 2018, 144, 1-4.104. Becherer, J.; Kramer, D.; Mönig, R., The growth mechanism of lithium dendrites and its coupling to mechanical stress. J. Mater. Chem. A 2022, 10 (10), 5530-5539.105. Wu, L.; Ashworth, M. A.; Wilcox, G. D., Zinc whisker growth from electroplated finishes – a review. Transactions of the IMF 2015, 93 (2), 1-8.106. Chapaneri, R.; Ebbage, A. J.; Wilcox, G. D.; Critchlow, G. W.; Chojnicki, A.; Pearson, T.; Rowan, A. J., Effect of heat treatment on promoting zinc whisker growth from bright zinc electrodeposited coatings. Transactions of the IMF 2009, 87 (3), 159-162.107. Noyan, I. C.; Cohen, J. B., Residual stress: measurement by diffraction and interpretation. Springer: 2013.108. Barceló, G.; Sarret, M.; Müller, C.; Pregonas, J., Corrosion resistance and mechanical properties of zinc electrocoatings. Electrochim. Acta 1998, 43 (1), 13-20.109. Rulev, A. A.; Kondratyeva, Y. O.; Yashina, L. V.; Itkis, D. M., Lithium planar deposition vs whisker growth: Crucial role of surface diffusion. The Journal of Physical Chemistry Letters 2020, 11 (24), 10511-10518.110. Gu, J.; Tao, Y.; Chen, H.; Cao, Z.; Zhang, Y.; Du, Z.; Cui, Y.; Yang, S., Stress-release functional liquid metal-mXene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 2022, 12 (16), 2200115.111. Stoney, G. G.; Parsons, C. A., The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1997, 82 (553), 172-175.112. Xiang, S.; Zhang, X., Residual stress removal under pulsed electric current. Acta Metallurgica Sinica (English Letters) 2020, 33 (2), 281-289.113. Gu, J.; Shi, Y.; Du, Z.; Li, M.; Yang, S., Stress relief in metal anodes: Mechanisms and applications. Adv. Energy Mater. 2023, 13 (40), 2302091.114. Liu, C.; Luo, Z.; Deng, W.; Wei, W.; Chen, L.; Pan, A.; Ma, J.; Wang, C.; Zhu, L.; Xie, L.; Cao, X.-Y.; Hu, J.; Zou, G.; Hou, H.; Ji, X., Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 2021, 6 (2), 675-683.115. Spaepen, F., Interfaces and stresses in thin films. Acta Mater. 2000, 48 (1), 31-42.116. Wilkinson, A. J.; Hirsch, P. B., Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 1997, 28 (4), 279-308.117. Sperry, R.; Han, S.; Chen, Z.; Daly, S. H.; Crimp, M. A.; Fullwood, D. T., Comparison of EBSD, DIC, AFM, and ECCI for active slip system identification in deformed Ti-7Al. Mater. Charact. 2021, 173, 110941.118. Du, W.; Zhang, Z.; Iacoviello, F.; Zhou, S.; Owen, R. E.; Jervis, R.; Brett, D. J. L.; Shearing, P. R., Observation of Zn dendrite growth via operando digital microscopy and time-lapse tomography. ACS Appl. Mater. Interfaces 2023, 15 (11), 14196-14205.119. Zhou, X.; Lu, Y.; Zhang, Q.; Miao, L.; Zhang, K.; Yan, Z.; Li, F.; Chen, J., Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system. ACS Appl. Mater. Interfaces 2020, 12 (49), 55476-55482.120. Steiger, J.; Kramer, D.; Mönig, R., Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 2014, 261, 112-119.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/677964
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Yi ZB. Microstructure Studies of Zinc Electrodeposits in Zinc Metal Batteries[D]. 香港. 香港科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11951013-易志宾-材料科学与工程(10734KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[易志宾]的文章
百度学术
百度学术中相似的文章
[易志宾]的文章
必应学术
必应学术中相似的文章
[易志宾]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。