中文版 | English
题名

Unveiling urban traffic accessibility patterns and phase diagrams of traffic direction through real-time navigation data in Beijing

作者
发表日期
2024-05
DOIhttps://doi.org/10.1016/j.ipm.2024.103660
发表期刊
ISSN
0306-4573
卷号61期号:3页码:103660
摘要
Urban transportation accessibility plays a crucial role in assessing traffic conditions and gaining insights into urban development. Current research on accessibility patterns often relies on sensor data, focusing predominantly on specific locations or times. Recognizing the need for a more holistic study that considers the interconnected impact of both geographical location and time variables, this research conducts a spatial–temporal analysis of over 846,720 real-time location-to-location navigation data from Baidu Maps in Beijing. The findings reveal four distinct traffic accessibility patterns: the Weekend pattern (W-pattern), Southern weekday pattern (S-pattern), Northern weekday pattern (N-pattern), and Holiday pattern (H-pattern). These patterns exhibit spatial–temporal distribution characteristics and scale invariance. Significantly, scale invariance emerges as a key feature, suggesting potential phase transitions in the dynamic change process of the traffic system. To capture this phenomenon, a new indicator is introduced, utilizing the relative velocity sign to resemble the spin direction in the Ising model. Phase transition-like occurrences are identified through the phase diagram of the traffic state. These observations may provide useful insights into the geographic and temporal patterns of transportation accessibility in growing metropolitan areas.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
出版者
ESI学科分类
SOCIAL SCIENCES, GENERAL
Scopus记录号
2-s2.0-85183008276
来源库
人工提交
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/677975
专题理学院_统计与数据科学系
作者单位
1.LMIB & School of Mathematical Sciences, Beihang University, Beijing, China
2.NLSDE & Institute of Artificial Intelligence, Beihang University, Beijing, China
3.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
4.Zhongguancun Laboratory, Beijing, China
5.Zhengzhou Aerotropolis Institute of Artificial Intelligence, Zhengzhou, Henan, China
6.School of Physics, Peking University, Beijing, China
推荐引用方式
GB/T 7714
Bing,Liu,Yifang,Ma,Jin,Zhang,et al. Unveiling urban traffic accessibility patterns and phase diagrams of traffic direction through real-time navigation data in Beijing[J]. Information Processing & Management,2024,61(3):103660.
APA
Bing,Liu,Yifang,Ma,Jin,Zhang,Yi,Kuang,Junjie,Bian,&Xin,Jiang.(2024).Unveiling urban traffic accessibility patterns and phase diagrams of traffic direction through real-time navigation data in Beijing.Information Processing & Management,61(3),103660.
MLA
Bing,Liu,et al."Unveiling urban traffic accessibility patterns and phase diagrams of traffic direction through real-time navigation data in Beijing".Information Processing & Management 61.3(2024):103660.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bing,Liu]的文章
[Yifang,Ma]的文章
[Jin,Zhang]的文章
百度学术
百度学术中相似的文章
[Bing,Liu]的文章
[Yifang,Ma]的文章
[Jin,Zhang]的文章
必应学术
必应学术中相似的文章
[Bing,Liu]的文章
[Yifang,Ma]的文章
[Jin,Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。